análisis de la prueba de selectividad de qúmica DE LA INIVERSIDAD DE CASTILLA-LA MANCHA. JUNO 1990

Franco Allares Medrano
Carmelo Garrido del Solo
Mariano Hernández Puche Joaquín Redriguez Guarnizo Alonso Sánchez Muliterno

INTRODUCCIÓN

E análisis de los resultados de las pruebas de Química de Selectividad que se han venido realizando en la Universidad de CLM desde 1987, y que se resumen en la tabla 1, nos indican un alto grado de fracaso, ya que las puntuaciones medias apenas alcanzan el 5.00 sobre una escala de 10 puntos y además existc una gran desviación respecto a le modia aritmética. El \% de alumnos que aprueban el examen de Química es también muy bajo, como indica la tabla 1, aunque el porcentaje de alumnos que aprueban la Selectividad es más alto (del orden del 85%) al tener en cuenta otras asignaturas y los cxpedientes académicos.

Tabla 1
dATOS GLOBALES DE LA PRUEBA DE QUIMICA

CURSO	JUNIO							
	MEDIA	0	\% APROE.	MEDA	σ	e. APROB		
1987.88	4.33	2.27	41.98	3.51	2.20	27.12		
$1988-89$	5.06	2.91	52.08	4.23	2.92	39.63		
1989.90	4.23	2.36	38.98	-	-	-		Tuease: Reciorado de la Universidad de Castilla La Mancha
:---								

[^0]medias de la prueba de junio del 89.90 en las distintas provincias (gráfico 1).

Sin restar importancia a estos y otros machos intertogantes que podríamos plantear, hemos creido más pragmático centramos en el estudio en profundidad del áltimo tema planteado, es decir, qué aspectos (conceptos, algoritmos, etc.) son los que hacen adificily a los alumnos la realización de pruebas que los profesores solemos calificar coloquialmente como echupadass.

Para este análisis tampoco basta el estudio estadistico de las puntuaciones obtenidas en las distintas cuestiones o cjercicios planteados en cada prueba, así, por ejemplo, la tabla 2 , que nos indica los resultados de la Prueba de junio en seis aspectos temáticos básicos en Quimica de C.O.U., sólo nos indica que salvo en el ejercicio de aplicación de la Ley de Hess, en el que el porcentaje de éxito es del 60.84%, todas las demás cuestiones ;No llegan al 50% de éxito! Por lo que con casi todos los criterios de ordenación de dificultad encontrados en la bibliografla (García, 1985) esos ejercicios y cuestiones achupados* deben considerarse como difíciles o muy dificiles.

Grárico 1

Tabla 2
PUNTUACIONES EN LOS DISIINTOS EIERCICIOS YIO CUESTIONES DE LA PRUEBA DE QUIMICA DE 1990

Ejercicio ocresitio (tumilita)	Putuacion mivina	K	\& fanto =
Ley de Hess	2,5	153	60,84
Estepuiometria (Opción A)	2.5	1,18	46,98
Estequionetita (Opcien B)	2.5	1,21	45,00
Onidación-Reducsóón	20	0,78	37.95
Prodacto de solabilidad	20	082	45,00
Ácito-Fase	20	0.52	28,33
Principio de Le Chaselier	20	0.76	45,00

Aunque la información de la tabla 2 puede considerarse como muy interesante, ya que nos indica que los alumnos sólo pasaron con éxito (de entre los seis aspectos seleccionados para ese estudio) el ftem sobre el Principio de Conservación, siendo la calificación inferior a 5 (sobre 10 puntos) en todos los demás aspectos seleccionados, lo cierto es que, en cada uno de esos cjercicios o cuestiones, aparecen varios conceptos, fórmulas, algoritmos... y en suma conocimientos, que debidamente secuenciados e interrelacionados, son los que hacen posible llegar a realizar con acierto, y hasta el resultado final, cuestiones y ejercicios que ya ofrecen un cierlo grado de complejidad, pero que las instituciones consideran que los alumnos deben estar en condiciones de dominar para acceder a estudios universitarios.

En consecuencia, como la información que los datos estadísticos precedentes, aun siendo muy significativos, se muestran inadecuados para determinar el grado de preparación de los alumnos en los distintos aspectos que intervienen en la resolución de actividades complejas como las ciladas, nos vimos obligados a buscar un procedimiento que permitiera conocer dónde están las causas que expliquen los resaltados negativos de las tablas 1 y 2 .

LA MUESTRA

Hemos tomado una muestra de 226 alumnos que corresponden al 11.15% del total presentados al examen de Química en la convocatoria de junio de 1990. Para ello hemos agrupado los exámenes en tramos de pumbo en punto ($0-1,1-2$, etc.) y luego hemos tomado de cada uno de ellos un poreentaje lo más próximo posible al 11.15\%, de tal manera que la nota media de los 226 alumnos seleccionados ha sido de 4,34, lo

Grafoco 2
cual se corresponde de forma casi exacta con la media de prucba de Química en la Universidad de CLM que es de 4.23. La distribución de medias y desviaciones de la muestra se recoge en el gráfico 2 y las puntuaciones de los ejercicios en el gráfico 3.

ANÁLISIS DE LA PRUEBA DE SELECTIVIDAD

Tal y como indicábamos en la introducción, los datos globales del \% de alumnos aprobados y las puntuaciones medias de la prueba e incluso las puntuaciones de cada una de las cuestiones seleccionadas para este estudio, no nos permiten extrace datos concretos, pormenorizados y objectivos que expliquen el alto grado de fracaso en esta prueba de Selectividad. Para poder extracr este tipo de conocimiento, es decir, que nos oricate la contestación a la pregunta ¿por qué o en qué fallan los alumnos?, hemos creído que debiamos fijamos en aquellos concep-

Grifico 3
tos, algoritmos y, en general, los distintos aspectos fundamentales de Quimica que pueden influir en la ejecución correcta de una prueba de este tipo. De esa forma, hemos realizado un listado de aspectos concretos que van desde los más fundamentales de $2 .^{\circ}$ de B.U.P., e incluso de E.G.B., hasta los propios de C.O.U. Como quiera que el listado se hacia muy amplio. clegimos los 21 que sc indican en la plantilla adjunta (anexo 1), ya que pensamos que eran los que mals se adaptaban a la prucba de junio en ambas opciones y además que recogian los aspectos más fundamentales para el estudio de la Química a estos niveles. Somos conscientes de que podrian e incluso deberian incluirse muchos más, pero dejamos un campo abierto a sucesivas investigaciones.

A fin de sistematizar las observaciones y facilitar el tratamiento estadistico, elaboramos la plantilla a que haciamos referencia en el pârafo anterior.

Tabla 3

Embctios	OpClón a			ORCOONs			
	1	1	4	1	2	4	5
CALI.	153	118	0.78	1.21	0.82	052	6.76
CALF. Mit.	2.50	250	2.80	2.50	1.00	280	2.60
NOTA (uh 10)	6.10	4.71	3.18	4.82	4.11	2.58	3.82
¢ APROE.	60.8	47.9	37.9	450	450	22.3	450

CONCLUSIONES

1. Las tablas 3 (puntuaciones obtenidas en la prucba: opción A y B) y 4 (distribución de notas en la muestra) ponen de manifiesto de una forma pormenorizada el fracaso que se entreveía en los datos globales de las tablas 1 y 2 .

> TABLA 4
> DISTRIBUCIÓN DE NOTAS

Interval.	ORCOONA	opcions	TOTAL	total actimatio
03	66	25	91	91
3.6	61	21	88	175
6.10	33	14	53	226
TUTAL	166	60	236	

Asi por ejemplo: (tabla 4) el 33\%, es decir, uno de cada tres alumnos de la muestra tienc una puntuación inferior a 3 y el 72\% inferior a 6 . La distribución de notas no es desde luego la Gausiana Clásica.

De los 6 aspectos elegidos y que trataba la prueba: Ley de Hess, estequiometría,., etc. y cuyas puntuaciones se recogen en la tabla 2. Sólo uno, el ejercicio de aplicación de la Ley de Hess, supera realmente la puntuación de 5 , ya que si bien es cierto que en los ejercicios de estequiometría, prácticamente se alcanza el nivel mínimo y sicológico de 5 (a 4,7 y 4,8) también es cierto que estos contenidos prácticamente corresponden a $3 .^{\circ}$ de B.U.P.
2. A la parte más interesante de este trabajo llegaremos a través de la información que nos ofrece los 21 aspectos analizados en la prueba y resurnidos en el gráfico 4.

Como puede observarse en la relación de los 21 contenidos o aspectos seleccionados, indicados en la plantilla, hay algunos que corresponden

Granco 4
a las programaciones de $3 .{ }^{9}$ e incluso de $2 .{ }^{\circ}$ Curso y otros que son los correspondicates a C.O.U.

Un primer examen del \% de éxito de esos contenidos o aspectos, nos hace ver que en 9 de los 21 no se llega al 50%, es decir, que la mitad de los alumnos no han sido capaces de superarlos.

Todos los aspectos (exceptuando el de aresultados correctoss) pertenecen a los contenidos del CO.U. menos los correspondientes a la M y N. Queremos resaltar el dato de que la M sólo la utilizan o calculan correctamente el $50,4 \%$ de los alumnos, es decir, que aproximadamente la eMITAD* del alumnado que pasa a la prueba de Selectividad, ni siquiera ha comprendido correctamente los conceptos de las unidades químicas de concentración.

Un análisis de algunos de los aspectos que superan el 50%, pero que corresponden a contenidos de $2 .^{2}$ o $3 . .^{2}$ tampoco son muy alentadores, asf:

- Tan sólo el $64,6 \%$ escribe correctamente las fómmulas que aparecen en la prueba (ácido nírico, cloruro de cine...).
- Aproximadamente la tercera parte ni siquiera es capaz de escribir la expresión de las reacciones químicas y sólo un $60,2 \%$ las ajusta debidamente.
- Un 30\%, aproximadamente, no han sabido calcular bien el número de moles, sólo un 58% ha distinguido adecuadamente entre soluto, disolvente y disolución a la hora de realizar los cálculos estequiométricos.
- Sólo la ecuación de los gases aparece como concepto claramente dominado: pues el 95% (prácticamente todos) la utilizan correctamente.

El analisis de los contenidos propios de C.O.U. es francamente preocupante, cosa que por otra parte era fácil de adivinar, después de lo indicado anteriormente.

Sólo aparecen bien asimilados los conceptos de reacción, de combustión, de compuestos orgánicos y el de la expresión de $\mathrm{K}_{\text {, }}$, aunque posteriormente muy pocos han podido aplicar esta expresión al caso concreto que se les exponia ($33,3 \%$).

Para no alargar mucho la exposición, podemos concluir diciendo que los alumnos, que acceden a la prueta de Selectividad, no han asimilado adecuadamente los contenidos de B.U.P. y que en estas condiciones malamente van a poder hacer lo propio con el complejo programa de CO.U.

Para terminar estas conclusiones de una forma gráfica, hemos establecido los siguientes criterios de dificultad (totalmente convencionales) para clarificar los distintos contenidos y aspectos valorados en la prueba:

Muy fáciles $=$ superados por el 85% de los alumnos.
Fáciles $=$ superados entre el 85% y 70% de los alumnos.
Idóncas $=$ supcrados entre el 70% y 55% de los alumnos.
Dificiles $=$ superados entre el 55% y 40% de los alumnos.
Muy difíciles $=$ superados por menos del 40% de los alumnos.
Pues bien, seguin ese criterio, serian para los alumnos:

* aspectos muy difíciles:
- Llegar al resultado final correcto.
- El principio de Le Chatelier.
- Establecer la ecuación iónica de oxidación-reducción.
- Aplicar la constante de equilibrio en las sustancias poco solubles o el producto de soludibilidad.
* aspectos difíciles:
- Utilizar o calcular la M, N y m.
- Establecer la ccuación de disociación.
- Escribir y ajustar las semirreacciones de oxidación-reducción.
* aspectos fáciles:
- Calcular el n. ${ }^{0}$ de moles.
- Expresar y ajustar las reacciones de combustión.
* aspectos muy fáciles:
- La ecuación de los gases ûnicamente.

Desde luego que si hubiésemos elegido el criterio más racional de Garcia (1985) La enseñanza sólo resulta eficaz para los alumnos que superan al menos los $3 / 4$ de los criterioss, el panorama hubiera sido desastroso.

RESUMEN

Este trabajo realmente no ha permitido descubrir nada que no supićramos muchos profesores: que los procedimientos actuales de Enseñarzza de las Ciencias y los contenidos de los programas de B.U.P. y C.OU, son totalmente inadecuados para provocar el aprendizaje significativo, que todos deseariamos: que la prueba de selectividad no es el procedimiento idónco para comprobar los grados de aprendizaje o, lo que es más probable, que se den las dos circunstancias.

Pero tal vez haya permitido profundizar en qué aspectos presentan mayores dificultades a los alumnos (por distintos motivos) que, en consecuencia, necesiten una mayor y mejor incidencia y planificación del proceso de enseîanza-aprendizaje. Sobre todo para que los profesores (los pocos) que aûn siguen convencidos de que el problema de la calidad se resuelve con sdare más contenidos, a más «nivels, y oseleccionandow más a los alumnos, que reflexionen sobre lo que verdaderamente se consigue con esta emetodologia de la superficialidad* (Gil, 1987) y que recuerden las frases de Einstein;... eLa pega era que para los exámenes había que embutirse todo ese material en la caberza, quieras o no. Semcjante coacción tenía efectos tan espantosos, que, tras aprobar el examen final se me quitaron las ganas de pensar en problemas cientificos durante un año entero. He de decir, sin embargo, que en Suiza sufríanos menos que en muchos otros lugares bajo esa coacción que asfixia el verdadero impalso cientifico...⿻.

BIBLIOGRAFIA

EINSTEIN, Albert; *Notas autobiográficas*. Alianza Editorial.
GARCÍA BAQUERO, P. y otros: eComienzo de Biología al terminat el curso de orientación universitaria*. Enseñanza de las Ciencias. Vol. 3, n. ${ }^{\text {e }}$ 3. Nov, 1987. Pág. 175.
RODRIGUEZ GUARNIZO, J.: *Resultados obtenidos en las pruebas de selectividad, relativos a la estequiometría química en la U.C.L.M.s. 1986.

BEST, W. J.: *Cómo investigar en educación». Ed. Morata.
FERNÁNDEZ PÉREZ. M.: *Evaluación y cambio educativo: el fracaso escolarn. Ed Morata.
PERALES PALACIOS, F. J.: «Estudio estadístico del grado de aprendivaje de conceptos físicos en una muestra de alumnos de $8 .^{\circ}$ de E.G.B. y tercer curso de Estudios Universitarios de Magisterios, Cuadernos de Fisica y Quimica de la E. U. del profesorado de E.GB. Valencia VoL. III. 1983.

JIMÉNEZ GÓMEZ, E. y CORREA GONZÁLEZ, I.: *Técnicas utilizaxas en el aprendizaje de la unidad temática de electroquímicas. Cuadernos de Fisica y Quínica de la E. U. del profesarado de E.GB. Valencia, Vol. IV. 1983.

GIL. D.: α Tres paradigmas básicos en la enseñanza de las Cienciaso. Enseñanza de las Ciencias. Vol. I. 1983.
POZO, J. J.: El adolescente como cientificos. Cuadernos de Pedagogia. 152.

ANEXO 1

\qquad thoor (A) 8 \qquad 00001 - $1-1+11-1$

1010

ANEXO 2

UNIVERSIDAD DE CASTILLA-LA MANCHA
Pruebas de aptitud para el acceso a Facultades EE.TT SS. y CC.UU.
Química:

EL ALUMNO ELEGIRÁ UNO DE LOS DOS REPERTORIOS SIGUIENTES:

REPERTORIO A:

1. Las variaciones de entalpía normales de formación del butano, dióxido de carbono y agua líquida son: $-126,1 ;-393,7 ;$ y $-285,9 \mathrm{KJ}$ / mol. Calcular el calor desprendido en la combustion total de 3 Kg . de butane. (Masas atómicas: $\mathrm{C}=12 ; \mathrm{O}=16 ; \mathrm{H}=1$).
2. Una disolución acuosa de ácido nítrico concentrado, de densidad $1,405 \mathrm{~g} . / \mathrm{ml}$., contiene $68,1 \%$ en peso de dicho acido. Calcular la molaridad, la normalidad y la molalidad de dicha disolución. (Masas atómicas: $\mathrm{N}=14 ; \mathrm{O}=16 ; \mathrm{H}=1$).
3. Ordenar razonadamente de mayor a menor afinidad electrónica los elementos: CI, F, P, y N.
4. Ajustar la siguiente, reacción de oxidación-reducción:

$$
\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \Leftrightarrow \mathrm{MnSO}_{4}+\mathrm{O}_{2}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Nombrar las sustancias que intervienen y especificar quiến actúa cómo oxidante y cómo reductor.
5. ¿Qué son, cómo se preparan y qué particularidad poseen las disoluciones reguladoras de pH ? Escribir dos ejemplos, uno para pH ácido y otro para pH básico.

REPERTORIO B:

1. Se mezclan 20 g . de cinc puro con 200 ml . de HCl 6 M . Cuando termine el desprendimiento de hidrógeno, ६qué quedará en exceso, cinc o ácido? ¿Qué volumen de hidrógeno, medido a $27^{\circ} \mathrm{C}$ y 760 mm . de Hg . de presión se habrá desprendido? (Masas atómicas: $\mathrm{Zn}=65,4 ; \mathrm{Cl}=35,5 ; \mathrm{H}=1$).
2. A $25^{\circ} \mathrm{C}, 250 \mathrm{ml}$. de agua disuelven $0,172 \mathrm{~g}$. de yoduro de plomo.

Calcular a esa temperatura el producto de solubilidad de dicha sal. (Masas atómicas: $\mathrm{Pb}=207 ; 1=127$).
3. El oxígeno tiene nümero atómico 8: a) Escribir su estructura electrónica; b) ¿Qué tipo de enlaces y estructura geométrica tendrá el agua?
4. Al disolver una sal en agua, ¿podernos obtener un pH básico? En caso positivo, razone la respuesta y ponga algún ejemplo.
5. En la síntesis del amoniaco:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3} ; \Delta \mathrm{H}=+100.32 \mathrm{KJ} / \mathrm{mol} .
$$

se recomiendan presiones muy altas y temperaturas del orden de los $600^{\circ} \mathrm{C}$, al mismo tiempo que la continua eliminación del amoniaco formado. Justifique cada una de estas recomendaciones.

CIENCIAS

I Luis Mansilla Plaza
I Antonio J. Barbero
Patricio Ramírez
I A. Valdés Franzi
R. Molina Cantos
J. L. González Beserán

I E. Valero
J. Cebrián
M. García-Moreno
R. Varón
F. García-Carmona

I Enrique Arribas Garde
Vicente Sanjosé López
I Pilar Turégano Moratalla
I Joaquín Santisteban Martínez

E N S A Y O S

[^0]: El estudio de las puntuaciones por Provincias no aporta datos relevantes para este estudio. Como ejemplo indicamos las puntuaciones

