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Fuzzy sets were formally introduced fi fty years ago by Zadeh 
(1965) as a tool to provide “a natural way of dealing with the 
problems in which the source of imprecision is the absence of 
sharply defi ned criteria of class membership….” As imprecisely 
defi ned classes, fuzzy sets were anticipated to “play an important 
role in human thinking”, and Psychology was foreseen as one of 
the promising fi elds of application.

Ten years later, Zadeh (1975) formalized the concept of 
linguistic variable as a means to address ill-defi ned phenomena 
which cannot be properly described in conventional quantitative 
terms. More concretely, linguistic values were interpreted as 

labels for ‘fuzzy restrictions’, which associate each value in a 
referential set with its ‘degree of compatibility’ in [0,1] with such 
a restriction.

Actually, by looking at the Web of Science, Psychology is one 
of the subject categories having the most works citing Zadeh’s 
seminal paper (1965), and many other papers/books have been 
devoted to applying fuzzy sets to psychological studies (e.g., 
Zétényi, 1988; Smithson & Oden, 1999; or Stoklasa, Talášek, & 
Musilová, 2014).

Among the various psychological topics the Fuzzy Set Theory 
is applied to, one can mention learning disability (e.g., Horvath, 
1988), comparison of psychophysical methods (e.g., Garriga 
Trillo, & Dorn, 1991), psychotherapy (e.g., Horowitz & Malle, 
1993), occupational preferences (e.g., Hesketh, Hesketh, Hansen, 
& Goranson, 1995), false memories (e.g., Leding, 2013), user’s 
web navigation patterns (e.g., Agarwal & Agarwal, 2005), analysis 
of questionnaires (e.g., Coppi, Giordani, & D’Urso, 2006), 
developmental psychology (e.g., Van Dijk & Van Geert, 2009), 
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Abstract Resumen

Background: The fuzzy rating scale was introduced to cope with the 
imprecision of human thought and experience in measuring attitudes in 
many fi elds of Psychology. The fl exibility and expressiveness of this scale 
allow us to properly describe the answers to many questions involving 
psychological measurement. Method: Analyzing the responses to a fuzzy 
rating scale-based questionnaire is indeed a critical problem. Nevertheless, 
over the last years, a methodology is being developed to analyze 
statistically fuzzy data in such a way that the information they contain is 
fully exploited. In this paper, a summary review of the main procedures 
is given. Results: The methods are illustrated by their application on the 
dataset obtained from a case study with nine-year-old children. In this 
study, children replied to some questions from the well-known TIMSS/
PIRLS questionnaire by using a fuzzy rating scale. The form could be fi lled 
in either on the computer or by hand. Conclusions: The study indicates that 
the requirements of background and training underlying the fuzzy rating 
scale are not too demanding. Moreover, it is clearly shown that statistical 
conclusions substantially often differ depending on the responses being 
given in accordance with either a Likert scale or a fuzzy rating scale.

Keywords: fuzzy numbers, fuzzy rating scale, Likert scale, Statistics with 
fuzzy data.

Análisis de datos de un cuestionario basado en la escala de valoración 
fuzzy. Estudio de caso. Antecedentes: la escala de valoración difusa se 
introdujo para abordar la imprecisión inherente al pensamiento humano y 
la experiencia al medir actitudes en muchos campos de la Psicología. La 
fl exibilidad y expresividad de esta escala permiten describir apropiadamente 
las respuestas a la mayoría de las cuestiones que involucran mediciones 
psicológicas. Método: analizar las respuestas a cuestionarios basados en 
dicha escala supone un problema crítico. No obstante, en los últimos años 
se está desarrollando una metodología específi ca para el análisis estadístico 
de datos difusos que explota toda la información disponible. En este trabajo 
se recoge un resumen de los procedimientos más relevantes. Resultados: 
los métodos se ilustrarán mediante su aplicación a los datos de un estudio 
realizado con niños de nueve años. En él, los niños han respondido a 
algunas cuestiones del conocido cuestionario TIMSS/PIRLS recurriendo 
a un formulario basado en la escala de valoración difusa y en formato 
impreso o digital. Conclusiones: en primer lugar, el estudio muestra que 
los requisitos previos de formación y entrenamiento para cumplimentar tal 
formulario son poco exigentes. En segundo lugar, se verifi ca que a menudo 
las conclusiones estadísticas difi eren sustancialmente dependiendo de que 
las respuestas se den según escala Likert o de valoración difusa.

Palabras clave: números difusos, escala de valoración difusa, escala 
Likert, Estadística con datos difusos.
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work adjustment to retirement transition (Hesketh, Griffi n, & 
Loh, 2011), signal detection analysis (Szalma & Hancock, 2013), 
linguistic prototypes (e.g., Ávila-Muñoz & Sánchez-Sáez, 2014), 
etc. 

Although infl uential reputed psychologists like Osheron and 
Smith (1981, 1982) argued by considering specifi c examples that 
fuzzy sets cannot be employed to deal properly with concepts and 
their ‘calculus’, these arguments have been refuted over the years 
(see, for instance, Bělohlávek, Klir, Lewis, & Way, 2002, 2009; 
Bělohlávek & Klir, 2011; Wierman, 2013).

As outlined by Walsh, Teo, and Baydala (2014), “fuzzy logic 
refl ects how people actually think by assigning gradations of 
meaning… Both the act of measurement and the use of statistical 
techniques to make sense of numerical observations with absolute 
certainty are questionable. Fuzzy Logic adds another critical 
dimension to the historical problems of psychologists’ investigative 
language and uncritical reliance on quantifi cation.” The spirit of 
these assertions has been well captured by the so-called fuzzy rating 
scale, introduced by Hesketh, Pryor, and Hesketh (1988) in the 
framework of psychological measurement through questionnaires. 

Questionnaires are designed to assess many domains of 
psychology-related issues, such as perceptions, opinions, emotional 
states, etc., and the responses to the involved questions have been 
usually given by means of Likert scales (see, for instance, Peña-
Suárez, Muñiz, Campillo-Álvarez, Fonseca-Pedrero, & García 
Cueto, 2013; Castillo, Tomás, Ntoumanis, Bartholomew, Duda, 
& Balaguer, 2014, for some recent examples). Different studies 
have been carried out to discuss the infl uence of the number of 
categories/points of the Likert scale on the reliability of the 
analysis of these responses. They usually coincide in pointing out 
that increasing the number of categories results in an increase of 
the variability, information and reliability (see, for instance, Tomás 
& Oliver, 1998; Lozano, García-Cueto, & Muñiz, 2008). 

Actually, to some extent, the ideal situation would be increasing 
the number of choices to a continuum, but one cannot achieve it 
by using a natural language, as outlined by Sowa (2013). If one 
aims to really exploit the individual differences in responding to 
questionnaires, there is a need for a rich and expressive scale in 
which “something can be meaningful although we cannot name it” 
(Ghneim, 2013). All this agrees with Zadeh’s attempt to ‘precisiate’ 
natural language by treating the associated measurements as 
objects of computation. In this sense, Zadeh (2008) wisely asserts 
that “Paradoxically, one of the principal contributions of fuzzy 
logic... is its high power of ‘precisiation’ of what is imprecise.”

The fuzzy rating scale by Hesketh et al. (1988) takes advantages 
of three of the main skills of fuzzy sets, namely, the abilities to 
formalize mathematically imprecise valuations, to ‘precisiate’ 
them in a continuous way allowing infi nite nuances, and to 
develop mathematical computations with them. In contrast to 
questionnaires using Likert scales, for which responses to questions 
are constrained to choosing one within a list of prefi xed labels, 
questionnaires based on the fuzzy rating scale have a free format 
(i.e., in a sense, it combines the visual analogue and fuzzy linguistic 
scales). This freedom defi nitely entails a gain of information and 
accuracy, which should not be neglected when analyzing responses 
from a statistical viewpoint. 

Aiming to achieve this goal, Hesketh et al., (2011) have 
indicated the need for statistical techniques (especially inferential 
ones) for fuzzy data. Although a few studies have been carried out 
to analyze fuzzy rating scale-based data (e.g., Hesketh et al., 1988, 

199; Takemura, 1999, 2007), these studies are descriptive ones, 
often involving a certain defuzzifi cation process. 

Over the last few years, a statistical methodology to analyze 
fuzzy data is being developed through several studies (see, for 
instance, Blanco-Fernández et al., 2014, for a recent review). This 
methodology is based on the so-called random fuzzy numbers, 
which allow us to develop statistics with fuzzy data within a 
probabilistic setting and, furthermore, to preserve the key ideas 
from the real-valued case. The novelties of this methodology with 
respect to the previous studies in the literature analyzing fuzzy 
rating scale-based data are that it adds inferential procedures and, 
instead of involving defuzzifi cation processes, each fuzzy datum is 
treated as a whole, so no relevant information is lost.

This paper aims to illustrate the application of this statistical 
methodology to analyze data coming from a fuzzy rating scale-
based questionnaire, as well as to corroborate that conclusions 
from this analysis usually differ from those of the data analysis for 
the original Likert scale-based questionnaire, both questionnaires 
having been conducted on the same sample.

Method

Participants

To show how the fuzzy rating scale works by means of a real-
life example, sixty-nine 9-year-old children from the fourth grade 
students of the Colegio San Ignacio in Oviedo (Asturias, Spain) 
have participated in the study. 

The distribution of participants by sex, questionnaire format, 
mark taken in the last exam and other aspects can be found in the 
supplementary material http://bellman.ciencias.uniovi.es/SMIRE/
FuzzyRatingScaleQuestionnaire.html.

Instrument

In this subsection, we shall fi rstly recall the main general 
tools (preliminaries) and later we shall describe the specifi c ones 
considered for the case study.

General tools: Firstly, we recall the notions from Fuzzy Set 
Theory which are required to model and handle the responses from 
a fuzzy rating scale-based questionnaire. Later, this questionnaire 
and the scale underlying it are detailed. Thirdly, a summary of 
the already developed procedures to analyze fuzzy responses is 
presented. 

The responses to questions from a fuzzy rating scale-based 
questionnaire are assumed to be modelled as fuzzy numbers, where 
(see Zadeh, 1975; Dubois & Prade, 1979):

Defi nition 1. A fuzzy number is a fuzzy subset of the space of 
real numbers, that is, a mapping Ũ : ℜ  [0,1] which is normal, 
convex and has compact levels (i.e., the α-level sets given by

Ũ
α
 = {x ∈ ℜ : Ũ(x) ≥ α} if α ∈ (0,1),

 Ũ
0
 = cl {x ∈ ℜ : Ũ(x)>0}

with ‘cl’ denoting the closure of the corresponding set, are closed 
and bounded intervals). Ũ(x) can be interpreted as the ‘degree of 
compatibility’ of x with the ‘property’ defi ning Ũ.

Consequently, fuzzy numbers are a ‘level-wise’ extension of 
interval values, in such a way that levels add gradualness to the 
imprecision associated with intervals.
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A particular type of fuzzy number which is easy-to-use for both 
drawing and computations is that of a trapezoidal fuzzy number. 
A trapezoidal fuzzy number Ũ = Tra(a,b,c,d) = Tra(inf Ũ

0
, inf Ũ

1
,               

sup Ũ
1
, sup Ũ

0
), with inf = infi mum, sup = supremum, can be 

characterized in terms of its corresponding α-level sets, given by 
the expression Ũ

α 
=

 
[αb + (1–α)a, αc + (1–α)d], α ∈ [0,1], so its 

meaning can be interpreted as follows: 

• Values in Ũ
1
 = [b, c] are viewed as fully compatible with Ũ.

•  Values in Ũ
0
 = [a, d], are viewed as compatible with Ũ to 

some extent.
• Grades of compatibility are linearly interpolated.

Although trapezoidal fuzzy numbers are a special type of fuzzy 
number, the way the 0- and the 1-level are ‘interpolated’ would 
scarcely affect the statistical conclusions. 

In handling fuzzy data for statistical purposes, computations 
often involve arithmetic with fuzzy numbers, more concretely, 
the sum and the product by scalars. In extending the sum and 
the product by a scalar from real to fuzzy numbers, the common 
way is to use Zadeh’s extension principle (Zadeh, 1975), which is 
equivalent to extending level-wise the arithmetic interval.

Defi nition 2. Let Ũ and Ṽ be two fuzzy numbers. The sum of Ũ 
and Ṽ is the fuzzy number Ũ+Ṽ such that for each α ∈ [0,1]

(Ũ+Ṽ)
α 

= [inf Ũ
α 

+ inf Ṽ
α
, sup Ũ

α 
+

 
sup Ṽ

α
]

Defi nition 3. Let Ũ be a fuzzy number and let γ a real number. 
The product of Ũ by γ is the fuzzy number γ ⋅ Ũ such that for each 
α ∈ [0,1] 

iU( ) =

i infU , i supU if 0,

i supU , i infU if < 0

Figure 1 shows examples of the sum and the product by 
scalar related to fuzzy numbers. It should be emphasized that 
(Ũ+(–1)⋅Ũ)

α
 is not usually equal to {0} (except in case Ũ 

reduces to a real number). As a consequence of this, in dealing 
with fuzzy numbers, one should be very careful and be aware 
that computations cannot be developed as a simple extension of 
those for real numbers. 

Most of the inconveniences associated with this assertion 
have been overcome by analyzing fuzzy data through the use of 
appropriate distances. Among the distances for fuzzy numbers that 
can be employed (see, for instance, Diamond & Kloeden, 1990), 
the following ones are outstanding examples whose suitability for 
statistical purposes has already been shown:

Defi nition 4. Let Ũ and Ṽ be two fuzzy numbers. The distance 
between Ũ and Ṽ can be measured, among others, by any of the 
following values:

2 U ,V( ) = infU – inf V
2
+ supU – supV

2( ) / 2{ }0

1 d ,

1 U,V( ) = infU – inf V + supU – supV( ) / 2{ }0
1 d ,

both introduced by Diamond and Kloeden (1990), and

D U ,V( ) = U[ ] V [ ]
2
d d0

1
0
1 ,

introduced by Bertoluzza, Corral, and Salas (1995), with Ũ[τ]
α
 = τ ⋅ 

sup Ũ
α
 + (1-τ) ⋅ inf Ũ

α
.

Whereas the fi rst and third distances correspond to the so-called 
L2 type (often considered in studies concerning means), the second 
distance is of L1 type (interesting in connection with some robust 
location measures). 

The fuzzy rating scale has been introduced (Hesketh et al., 1988) 
as an approach allowing us to combine a free-response format with 
a fuzzy valuation. In the fuzzy rating scale, along a continuous line 
between two end-points:

•  A respondent selects or draws a ‘representative position/
interval’ of her/his rating (i.e., the 1-level = set of points which 
she/he considers to be fully compatible with such a rating).
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Figure 1. Examples of the sum (on the top) and the product by a 
scalar (on the bottom) of fuzzy numbers
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•  And he/she also indicates ‘latitudes of acceptance’ on 
either side by determining the highest and lowest possible 
positions for the respondent rating (i.e., the 0-level = set 
of points which she/he considers to be compatible to some 
extent with such a rating).

Once these two steps are given (see Figure 2 on the top), a 
trapezoidal fuzzy number is drawn by using linear interpolation 
(see Figure 2 on the bottom).

The free response format allows respondents to use a continuum 
of ‘values’ which, in general, cannot be universally ordered. As it 
has been empirically shown by De la Rosa de Sáa, Gil, González-
Rodríguez, López, and Lubiano (2015), the use of the expressive 
fuzzy rating scale leads, in most cases, to more accurate statistical 
conclusions, as one explores and exploits more information and 
variability than with the use of the Likert ones.

When responses from a questionnaire are given in accordance 
with a qualitative/categorical scale, the statistical analysis is 
usually based on the unique quantifi able involved aspects, namely, 
frequencies of the few modalities/categories and maybe positions. 

When responses are given in accordance with the fuzzy rating 
scale, they add some other quantifi able aspects: certain intervals 
(the level sets) and certain gradualness (the degree of compatibility 
with the response). Consequently, the statistical analysis of these 
responses should not neglect this quantitative information, and it 
should also exploit the variability inherited from the use of the free 
response format as much as possible.

Over the past years a methodology is being developed aiming to 
extend some of the valuable procedures in dealing with real-valued 
data to analyze fuzzy ones. A crucial role in this methodology is 
played by the model for the random mechanism generating fuzzy 
number-valued data (random fuzzy number), which is well-stated 
within the probabilistic setting and enables preserving most of the 
key concepts in statistics with real-valued data (e.g., the bias of an 
estimator, the p-value of a test, etc.).

Defi nition 5. Given a random experiment (modelled by means 
of a probability space (Ω, A, P), a random fuzzy number (RFN 
for short) associated with it is a fuzzy number-valued mapping 
χ defi ned on Ω and such that for all α ∈ [0,1] the real-valued 
mappings inf χα  and sup χα (with inf χα (ω) = inf (χ (ω))α and 
sup χα (ω) = sup (χ (ω))α for all ω ∈ Ω) are real-valued random 
variables. 

Random fuzzy numbers (introduced in a more general framework 
by Puri and Ralescu, 1986) can be formalized in equivalent ways 
(see, for instance, Blanco-Fernández et al., 2014) guaranteeing that 
one can refer properly to the (induced) distribution of a random fuzzy 
number, the independence of random fuzzy numbers, and so on. 

The analysis of fuzzy number-valued data often concerns some 
summary measures, like:

• (Fuzzy-valued) central tendency measures (e.g., the Aumann-
type mean value and the 1-norm median of an RFN). 

• And (real-valued) dispersion measures (e.g., the variance).

These measures are now recalled.
Defi nition 6. Given a random experiment and an associated 

RFN χ, the (Aumann-type) mean value of χ (Puri & Ralescu, 
1986) is the fuzzy number Ẽ(χ), if it exists, such that for all α 
∈ [0,1]

(Ẽ (χ))
α
 = [E(inf χα), E (sup χα)]

(with E denoting the mean value of the associated random variable). 
In particular, if x~(n) = (x~

1
, …, x~

n
) is a sample of observations from 

the RFN χ, then the corresponding sample mean is given by the

fuzzy number x
(n)

 such that for all α ∈ [0,1]

x(n) =
inf(x1) +…+ inf(xn )

n
,
sup(x1) +…+ sup(xn )

n

Defi nition 7. Given a random experiment and an associated 
RFN χ, the (1-norm) median of χ (Sinova, Gil, Colubi, & Van 
Aelst, 2012) is the fuzzy number M~(χ) such that for all α ∈ [0,1]

(M~(χ))
α
 = [Me(inf χ

α
), Me(sup χ

α
)]

(with Me denoting the median of the associated random variable, 
and using the convention of the  mid-point of the class of medians 
in case of non-uniqueness). In particular, if x~(n) = (x~

1
, …, x~

n
) is a 

sample of observations from the RFN χ, then the corresponding 
sample median is given by the fuzzy number M~(x~(n)) such that for 
all α ∈[0,1].

M
~(x~(n)) = [Me{inf(x~

1
)
α
, …, inf(x~

n
)
α
}, Me{sup(x~

1
)
α
, …, sup(x~

n
)
α
}]

Consequently, the computation of these two central tendency 
measures reduces to that of the measures they extend on certain 
real-valued random variables.

Defi nition 8. Given a random experiment and an associated 
RFN χ, the ρ

2
 -variance (respectively, D-variance) of χ (Lubiano, 

Gil, López-Díaz, & López, 2000) is the real number Varρ2
(χ)

  
(respectively, Var

D
(χ)), if it exists, given by

Varρ2
(χ) = E([ρ

2
(χ, Ẽ(χ))]2)

  
 

 (respectively, Var
D
(χ) = E([D(χ, Ẽ (χ))]2)).

The mean value and the median of an RFN, as defi ned above, 
extend those for the real-valued case and preserve the usual 
properties held in that case. 

In developing a methodology for the statistical analysis of 
fuzzy number-valued data associated with a random experiment, 
in addition to the above-recalled summary measures, one should 
be aware, regarding inferential purposes, that

• ‘Realistic’ families of models (like normal, Poisson, etc., in 
the real-valued case) for distributions of RFNs have not yet 
been established. 

• And there are no Central Limit Theorems for RFNs that are 
directly applicable.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

1

0

Figure 2. Example of a fuzzy rating scale-based response
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Thanks to the use of appropriate distances between fuzzy 
data, the concept of random fuzzy numbers, and the existence of 
a bootstrapped Central Limit Theorem for generalized random 
elements (Giné & Zinn, 1990), the preceding shortcomings can be 
overcome and large samples are not usually required.

Among the inferential problems and procedures which have 
already been tackled:

• Some studies have been carried out concerning the estimation 
of fuzzy- and real-valued ‘parameters’ of the distribution of 
an RFN on the basis of the information provided by a sample 
of independent observations from it (cf., Lubiano & Gil, 
1999; Sinova et al., 2012).

• Some bootstrap techniques have been developed to test 
statistical hypotheses, among others, about the fuzzy-valued 
means of RFNs by considering ‘two-sided’ hypotheses 
expressed in terms of the involved distances; the one-
sample test has been discussed by considering a bootstrap 
approach in Montenegro, Colubi, Casals, and Gil (2004) and 
González-Rodríguez, Montenegro, Colubi, and Gil (2006); 
the two-sample test has been discussed for independent 
samples in Montenegro, Casals, Lubiano, and Gil (2001) 
and for dependent samples in González-Rodríguez, Colubi, 
Gil, and D’Urso (2006); the k-sample case (one-way 
ANOVA test) for independent/dependent samples have been 
discussed in González-Rodríguez, Colubi, and Gil (2012) 
and in Montenegro, López-García, Lubiano, and González-
Rodríguez (2009), respectively; the factorial ANOVA has 
been examined in Nakama, Colubi, and Lubiano (2010); and 
a test for the equality of variances can be found in Ramos-
Guajardo, and Lubiano (2012).

Although this statistical methodology is often based on results 
which are stated in a rather abstract setting, the application of 
the methodology is defi nitely much simpler. Furthermore, the R 
package SAFD (Statistical Analysis of Fuzzy Data) by Trutschnig 
and Lubiano (http://cran.r-project.org/web/packages/SAFD/index.
html) implements most of the computations involved in these 
procedures. 

Specifi c tools: In 2011, the TIMSS (Trends in International 
Mathematics and Science Study) and PIRLS (Progress in 
International Reading Literacy Study) have joined to provide 
countries with the opportunity to assess their fourth grade students 
in three fundamental curricular areas: mathematics, science, and 
reading. 

In collaboration with the Spanish Institute of Educational 
Evaluation (INEE) a data analysis has been developed (see Corral-
Blanco, Zurbano-Fernández, Blanco-Fernández, García-Honrado, 
& Ramos-Guajardo, 2013) on data collected through some of the 
TIMSS/PIRLS questionnaires conducted in Spanish schools. These 
questionnaires are standard ones, and most of the responses have 
to be chosen among those on a Likert scale with 4 points, namely, 
Strongly Disagree (A1), Somewhat Disagree (A2), Somewhat 
Agree (A3) and Strongly Agree (A4). 

To show how the fuzzy rating scale works by means of a real-life 
example, the conducted questionnaire was designed on the basis of 
the selection of a few questions from the Student questionnaire 
TIMSS/PIRLS 2011 (see http://timss.bc.edu/timss2011/downloads/ 
T11_StuQ4.pdf). The chosen nine questions were based on 
the 4-point Likert scale A1-A4 in the original TIMSS/PIRLS 

questionnaire, but for this experiment, they were formulated with 
a double-type response (namely, the A1−A4 and the fuzzy rating 
scale-based with reference set the interval [0,10], see Figure 3). So, 
these nine questions were not modifi ed with respect to the original, 
but simply the second way of responding was added. 

The questionnaire was designed in both paper-and-pencil 
and computerized format (see http://bellman.ciencias.uniovi.es/
SMIRE/FuzzyRatingScaleQuestionnaire.html for both versions, 
the second one in Spanish). 

Procedure

Teachers decided that 24 of the students should fi ll out the 
paper-and-pencil and 45 of them should complete the computerized 
version.

The training of the fourth grade students in the study was 
carried out by providing them with some instructions to fi ll out the 
questionnaire. As it is diffi cult to explain how to draw a trapezoidal 
fuzzy set to students at this level, because they do not have the 
required background about real-valued functions yet, we made use 
of the notion of trapezium. No remarkable problems were found 
either in the training, which lasted up to 15 minutes, or in the 
obtained responses being coherent and plausible.

Data analysis

The Likert responses, or the corresponding encoded Likert ones, 
were analyzed with SPSS, whereas the fuzzy-valued responses 
were analyzed with R package SAFD. 

Two types of studies were carried out, namely,

• The estimates of the median of the 4-point Likert scale-
based responses, the estimates of the mean and variance 
of their ‘equidistant’ encoding to 0−10 (i.e., A1 ≡ 0, A2 ≡ 
10/3, A3 ≡ 20/3, and A4 ≡ 10), ELikert, and the extended 
versions of the fuzzy rating scale-based ones, FRS, were 
computed.

• The equality of means of two or more subpopulations/levels 
for the ELikert responses, as well as for the FRS ones, was 
tested.

Results

This section presents the details for the study which has been 
selected among those performed. It corresponds to the double-
responses in connection with reading, math and science.

1.

2.

Disagree
a lot

Disagree
a little

Agree
a little

Agree
a lot

0 1 2 3 4 5 6 7 8 9 10

1

Figure 3. Example of the double response (4-point Likert and fuzzy 
rating scale-based question) form
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First analysis (estimates of central tendency and dispersion)

The (estimates of the) mean, median and variance of the 
double responses (Likert/ELikert and FRS) to the nine questions 
concerning the three areas are presented in Table 1. The estimates 
for the Likert/ELikert responses were obtained by well-known 
computations. In the case of trapezoidal fuzzy data, computations 
for the Aumann-type value become really simple. To illustrate this 
assertion, if (r͂

1,1
, …, r͂

1,69
) is the sample of responses to Question 

R.1, with r͂
1,i

 = Tra(a
i
, b

i
, c

i
, d

i
) the corresponding sample mean 

is given by the trapezoidal fuzzy number given in Figure 4 and 
involve the following computations 

1

69
r1, i

i=1

69
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1

69 i
i=1

69
,
1

69
bi
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,
1
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69
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The computation of the mean for non-trapezoidal fuzzy data is 
mostly more complex. Moreover, the median and variance are not 
that easy to compute, irrespectively of the involved fuzzy data, as 
they should fi rst be performed for each of the levels, so they cannot 
be easily illustrated and the use of computer technology is virtually 
essential. 

Second analysis (testing the equality of some means)

The fi rst test to be considered analyzes the infl uence of the 
factor ‘mark in the scale 0-10 taken in the last exam’ on the mean 

response to a question. This factor was assumed in the analysis to 
act at the levels given by intervals G1 = [0,6], G2 = [6,8], G3 = 
[8,9], and G4 = [9,10],

The respondents to the nine questions concerning reading, math 
and science are distributed as shown in Table 2, which indicates that 
such an asymmetric grouping leads to a rather balanced situation. 
Although the rows in Table 2 could often coincide for the three 
questions in each area, this was not the case, as some students did 
not provide either their marks or their response to some questions.

To examine the infl uence of the factor ‘mark in the scale 0-10 
taken in the last exam’ (the factor acting at 4 possible levels, which 
are assumed to be given by intervals G1 - G4) on the response 
to each of the 3 questions posed per area, conclusions will be 
drawn on the basis of the responses in the considered sample of 69 
students. The one-way ANOVA test by González-Rodríguez et al. 
(2012) was performed to obtain the approximate p-values shown 
in Table 3, together with those for the Kruskal-Wallis test (KW) on 
the Likert responses.

The test for the FRS case indicates that the marks taken affect more 
(i.e., the p-values are lower for) questions associated with Science 
than with Math, and those with Math more than those with Reading. 

Multiple two-sample independent comparisons were performed 
by using the Mann-Whitney-Wilcoxon (MWW) test for the Likert 
responses and the procedure in Montenegro et al. (2001) for the 
FRS ones (Tables 4 and 5).

Table 1
Sample mean, median and variance of the FRS, Likert and ELikert response along the 9 different questions

ELikert  
mean

FRS 
Aumann-type mean

Likert 
median

FRS 
1-norm median

ELikert   
variance

FRS    
D-variance

# Valid 
responses

R.1 6.3738 A3 6.2191 4.7650 68

R.2 8.2099 A4 4.8236 3.1600 67

R.3 2.1885 A1 10.2874 8.2858 67

M.1 6.5672 A3 9.4243 7.0894 67

M.2 8.3341 A4 6.2381 5.2719 66

M.3 5.8935 A3 16.3918 12.2326 69

S.1 6.2572 A3 9.9034 6.6063 65

S.2 2.6553 A2 7.1199 5.1205 64

S.3 3.9392 A2 12.2823 8.2269 66
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Some additional studies with data in this case study were 
performed and collected in http://bellman.ciencias.uniovi.es/
SMIRE/FuzzyRatingScaleQuestionnaire.html (supplementary 
material).
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Figure 4. Responses to Question R.1 and the corresponding Aumann-type mean. On the left, the 69 sample FRS responses r͂
1,i

.  On the right, 
the sample Aumann-type mean

Table 2
Absolute frequency distribution of the number of respondents  to each of the 9 
questions in accordance with the group associated with their marks in the area

Absolute frequencies

G1 G2 G3 G4

READING

R.1 I like to read things that make me think 5 26 14 7

R.2 I learn a lot from reading 5 26 13 7

R.3 Reading is harder for me than any other subject 5 25 14 7

MATHS

M.1 I like math 7 18 16 20

M.2 My teacher is easy to understand 7 18 16 19

M.3 Math is harder for me than any other subject 7 19 16 20

SCIENCE

S.1 My teacher taught me to discover science in daily 
life

9 23 10 16

S.2 I read about science in my spare time 8 22 10 17

S.3 Science is harder for me than any other subject 10 23 10 17

Table 3
p-values in testing the equality of mean responses for different levels 

of the mark taken in the last exam

QUESTION KW Likert p-value FRS p-value

R.1 .026* .084

R.2 .012* .000***

R.3 .045* .100

M.1 .005** .000***

M.2 .167 .000***

M.3 .462 .067

S.1 .008** .001**

S.2 .457 .030*

S.3 .006** .001**

* p<.05,  ** p<.01,  *** p<.001

Table 4
 p-values in the pairwise MWW comparisons of the Likert responses for levels 

of the mark achieved in the last exam

p-value

G1↔G2 G1↔G3 G1↔G4 G2↔G3 G2↔G4 G3↔G4

R.1 .115 .107 .073 .747 .043* .094

R.2 .071 .443 .018* .187 .090 .024*

R.3 .516 .298 .106 .239 .023* .197

M.1 .198 .055 .011* .075 .004** .626

M.2 .141 .308 .063 .695 .538 .350

M.3 .651 .308 .341 .317 .270 .937

S.1 .013* .013* .388 .343 .079 .041*

S.2 .185 .203 .406 .952 .604 .639

S.3 .363 .002** .031* .010* .126 .264

* p<.05,  ** p<.01,  *** p<.001

Table 5
p-values in the pairwise comparisons of the fuzzy means for levels of the mark 

taken in the last exam

p-value

G1↔G2 G1↔G3 G1↔G4 G2↔G3 G2↔G4 G3↔G4

R.1 .091 .059 .144 .300 .512 .766

R.2 .106 .242 .047* .427 .000*** .011*

R.3 .625 .217 .414 .078 .506 .821

M.1 .169 .046* .002** .203 .010* .222

M.2 .010* .063 .001** .578 .225 .138

M.3 .323 .208 .558 .667 .512 .351

S.1 .007** .008** .557 .283 .073 .024*

S.2 .090 .145 .612 .915 .204 .308

S.3 .372 .003** .059 .012* .194 .236

* p<.05,  ** p<.01,  *** p<.001
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Conclusions

The analysis summarized in Table 2 clearly shows how 
conclusions differ between using Likert and using FRS data, and 
how the latter often allows for a more visible distinction between 
outputs. In this way, we note substantial differences, such as:

The ‘central tendency’ of the response to the same question • 
may be distant from one scale to the other (e.g., those for 
M.3).
The central tendency response to two questions can be very • 
close with respect to the Likert/ELikert data, but substantially 
different with respect to the FRS data (e.g., those for M.3 
and S.1). 
The last two columns concerning variance corroborate • 
what has been empirically asserted by De la Rosa de 
Sáa et al. (2015): although the FRS incorporates a much 
larger diversity of values, the mean squared deviation is 
substantially reduced when passing from Likert/ELikert 
to FRS, so the locations are more representative for FRS 
data. 

From Tables 3, 4 and 5, one can easily conclude that statistical 
testing results also differ according to the considered scale. To 
achieve a more accurate idea about the essential difference in the 
information exploited/explored with both scales, we can detail it 
for responses to M.2 analyzed in Table 6.

Although one cannot make general comparative assertions, 
from Tables 3 to 5, one can observe that if differences are defi nitely 
signifi cant with both scales (p<.05), the FRS data seems to reveal 
these differences more clearly. 

Also from Table 5, one can deduce, in connection with the six 
questions showing lowest p-values for the fuzzy responses that: 
for Question R.2, main signifi cant differences are between G4  and 
the others; for M.1 and M.2 main differences correspond to those 
between G1 and G4; for S.1, S.2 and S.3, the clearest differences 
are those shown between G1 and G3. Additional conclusions can 
be drawn by examining the p-values.

The study in this paper has served not only to show the potential 
of the fuzzy rating scale and the associated methodology, but it also 
confi rms that, although FRS questionnaires not being as immediate 
to fi ll as Likert ones, the required training and background to 
use FRS questionnaires are not really deep. Therefore, it is an 
especially advisable scale when one aims to have more accurate 
and informative conclusions. 

It would be interesting as a future research direction to discuss 
the statistical reliability of the new scale in contrast to the Likert 
scale ones or even of their fuzzy linguistic conversion.
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Table 6
Available information and ANOVA p-values in the comparisons of the fuzzy 

means for levels of the mark taken in the last exam

Likert-type  available information
Kruskal-Wallis  

p-value

M.2

A1 A2 A3 A4

G1 0 2 3 2

G2 0 1 6 11

G3 2 0 5 9

G4 0 1 4 14

.167

Fuzzy rating-type available information
FRS-based

p-value

M.2

G1  

.000***

G2 

G3

G4
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