DISUINUCIÓN DEL PERíODO DE RETARDO DE LA ACTITDAD CRESOLASA DE POLIFENOL OXIDASA EN PRESETCIA DE PEROXIDO DE HIDROGE\0
 E. Valero
 J. Cebrian
 M. Garcia-Morea9
 R. Varín
 E. Garcia-Carmona

E. Vatera,
f. Cebrián.
M. Garcia-Morrna.
R. Varoin.
Depariomenso de Qaínica-Física.
Universidat ar Casdila-le Mancha
F. Gurcle-Carmona.
Depariomento de Bloqsivica y Aboiogia Molechdor. Universidaf de Man iu.

RESUMEN

EN este trabajo se realiza un estudio cinético del efecto de la presencia de peróxido de hidrógeno sobre el periodo de retardo que muestra la enzima polifenol oxidasa en la expresión de su actividad cresolasa. Se observa que el periodo de relardo disminuye segin una cinética de tipo hiperbólico, aunque no llega a climinarse completamente debido a un efecto concomitante de inactivación de la enzima por el peróxido de hidrógeno.

INTRODUCCIÓN

La polifenol oxidasa (monofenol, dihidroxifenilalanina: oxígenos; óxidorreductasa, E.C. 1.14.18.1) es una cuproproteína ampliamente distribuida en la escala filogenética, encontrándose tanto en organismos procariotas como eucariotas (Mason, 1955; Mayer y Harel, 1979). Esta enzima cataliza dos tipos de reacciones acopladas, en las que interviene oxígeno molecular: a) actividad cresolasa: hidroxilación de mo-
nofenoles en la posición orto para obtener o-difenoles, y b) actividad catecolasa: oxidación de o-difenoles a sus correspondientes o-quinonas. En el mecanismo de catálisis intervienen tres formas de la enzima que se diferencian fundamentalmente en el estado de oxidación del cobre binuclear del centro activo: met, oxi y deoxi (Lerch, 1981; Robb, 1981).

La actividad cresolasa se ha caracterizado en polifenol oxidasa de diversas fuentes (Pomerantz y Warner, 1967; Duckworth y Coleman, 1970; Garcia-Carmona y col. 1979, Cabancs y col, 1987; Valero y col., 1988), presentando en todas ellas un período de retardo característico en la aparición de producto, cuya duración temporal es modulable por diversos factores, entre los cuales podemos destacar el efecto de las concentraciones de enzima y de sustrato, el pH , ta temperatura y la presencia de determinados agentes en el medio de reacción. Con respecto a estos últimos, hasta ahora se han detectado efectos de o-difenoles (Nelson y Dawson, 1944; Long y col., 1971; Lavollay y col., 1975), agentes donadores de electrones, como el ácido ascórbico, dimetiltetrahidrobiopterina, etc. (Pomerantz, 1966; Pomerantz y Wamer, 1967; Garcia-Cánovas y col., 1979), peróxido de hidrógeno (Kahn, 1983) y más recientemente el efecto de nucleófilos, como prolinas y serina (Valero, 1985; García-Carmona y col. 1987, 1988).

En el presente trabajo se realiza un estudio cinético del cfecto del peróxido de hidrógeno sobre el período de retardo mostrado por la actividad cresolasa de polifenol oxidasa, utilizando uva como fuente de enzima.

MATERIALES Y MÉTODOS

Materiales

El p-cresol, la polivinil pirrolidona insoluble y los reactivos para la determinación de proteínas (albúmina de suero bovino, azul brillante de Coomassie) fueron suministrados por Sigma Chemie GmbH, Descirhofen, Alemania. El resto de los reactivos utilizados fueron de grado analítico, y suministrados por Merck, Darmstadt, Alemania.

Purificación de la enzima

Las uvas Airen (Vitis vinifera) fueron recolectadas en estado de maduración comercial en Villarrobledo (Albacete). Los granos fueron separados del racimo a nivel de pedúnculo, lavados, secados, embolsados y almacenados a $-20^{\circ} \mathrm{C}$ hasta su uso.

La enzima fue purificada según el método propuesto por Lemer y
col (1971), aunque introduciendo alguna modificación (Valero y col., 1988). Las uvas (400 g .), tras ser descongeladas durante toda la noche a $4^{\circ} \mathrm{C}$ en 200 ml de tampón fosfato $100 \mathrm{mM} \mathrm{pH} 7,3$ conteniendo ascorbato de sodio 10 mM , fueron homogeneizadas durante 15 segundos mediante una batidora. El extracto así obtenido fue filtrado a través de ocho capas de gasa y centrifugado a $4.000 \times \mathrm{g}$. durante 15 minutos. El precipitado fue extraido durante 30 minutos con 25 ml . de Triton X100 al 1.5% en tampón fosfato $100 \mathrm{mM} \mathrm{pH} 7,3$, en presencia de polivinil pirrolidona (PVP) insoluble al 2% y cloruro de calcio 50 mM , con el fin de eliminar del medio los compuestos polifenólicos y las sustancias pécticas, respectivamente (Cash y col., 1976). Tras centrifugar a 15.000 xg . durante 1 hora, el sobrenadante oblenido fue sometido a precipitación fraccionada con sulfato de amonio entre el 45% y el 95% de saturación, partiendo de una disolución saturada de sulfato de amonio y neutralizada a pH 7.3 con amonfaco. El precipitado obtenido fue resuspendido en agua, y tras dialisis en dicho medio durante toda la noche fue utilizado como fuente de enzima.

Determinación de la actividad enzimática

La actividad cresolasa fue determinada a $25^{\circ} \mathrm{C}$ midiendo espectrofotornétricamente la aparición de la 4-metil-o-benzoquinona producto de la reacción de catalisis en su máximo de absorción a 400 nm , donde presenta un cocficiente de cxtinción molar $\varepsilon=1.350 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ (Mayer y col.. 1966). La velocidad de estado estacionario fue definida como la pendiente de la zona lineal de la curva de acumulación de producto. El período de retardo (L) fue estimado por extrapolación de dicha zona lineal al eje de abseisas. El medio de reacción estándar contenía, en un volumen final de $1,0 \mathrm{ml}, p$-cresol 0.5 mM como sustrato, tampón fosfato $10 \mathrm{mM} \mathrm{pH} 7,0$ y 0,023 unidades de actividad cresolasa.

Las medidas se realizaron en un espectrofotometro UV/Vis Beckman Mod. DU-7 HS, acoplado a un ordenador IBM PC-XT. El control de la temperatura se llevó a cabo mediante un baño Selecta Mod. Frigiterm S. 382 equipado con termostato y criostato, con una precisión de \pm $0,1^{\circ} \mathrm{C}$, junto con un termistor digital Cole-Parmer.

Una unidad de actividad enzimática fue definida como la cantidad de enzima que produce 1μ mol de 4 -metil-o-benzoquinona por minuto en las condiciones estándar anteriormente expuestas.

La concentración de proteínas en los distintos estadios del proceso de purificación fue determinada utilizando el método de Bradford (1976).

RESULTADOS Y DISCUSIÓN

En la Fig. I se representa la variación del periodo de retardo de la actividad cresolasa de polifenol oxidasa al adicionar al medio de reacción cantidades crecientes de $\mathrm{H}_{2} \mathrm{O}_{2}$, obteniéndase una disminución de tipo hiperbólico. Estos mismos resultados fueron tratados de acuerdo con la relación empírica establecida por Pomerantz y Warncr (1967) al analizar el efecto producido por la presencia en el medio del o-difenol correspondiente (ec.(1)):

$$
\begin{equation*}
\frac{1}{\mathrm{~L}}=\frac{1}{1}+\frac{1}{1} \frac{[0 \text {-difenol }]}{\mathrm{K}_{\mathrm{at}}} \tag{1}
\end{equation*}
$$

donde L, I y $\mathrm{K}_{\text {ate }}$ representan, respectivamente, el período de retardo en presencia y ausencia del o-difenol, y la constante de activación del odifenol, que se interpreta como la constante de afinidad para un centro de activación al que se asociaría el o-difenol siguiendo una simple union

Fxuma 1
Efecio de la presencia de perórico de hidrogeno sobre el periodo de retardo mostrado por la actividad cresolasa de poulfenol oxidasa de ava.

Figura 2
Representacidin zrafica segin ia ecwacion de Ponteran'z y Warmer (I907) (ec (l)) del eficto del peróxido de hidrogeno sobre el periodo de retando de la polifenol axidasa de una.
isoterma. Los resultados así obtenidos se muestran en la Fig. 2, evaluándose una constante de activación para el peróxido de hidrógeno $\mathrm{K}_{\mathrm{se}}=0,54 \mathrm{mM}$.

Oro hecho que se puede observar en la Fig. I es que no puede llegar a eliminarse completamente el período de retardo, lo cual puede ser debido a que además se observa una disminución de la actividad expresada (Fig. 3) y del nivel final de 4 -metil-o-benzoquinona formado en el medio (datos no mostrados). Kanh (1983) utilizando polifenol oxidasa de aguacate y L-tirosina como sustrato, observó que a bajas concentraciones de $\mathrm{H}_{3} \mathrm{O}_{2}$ el periodo de retardo se eliminaba completamente, mientras que altas concentraciones de $\mathrm{H}_{2} \mathrm{O}_{2}$ producían un effecto de inactivación sobre la enzima, así como un efecto eblanqueantes sobre el nivel final de dopacromo formado. Andrawis y Kahn (1985) también observaron un efecto de inactivación sobre la polifenol oxidasa de charnpir̂ón en presencia de $\mathrm{H}_{2} \mathrm{O}_{2}$ Sin embargo, Martínez-Cayuela y col. (1988) utilizando polifenol oxidasa de chirimoya y tiramina como

Fraves 3
Efecto de la presencia de peróxido de hidrögeno sobve la cypresión de la actividod cresolasa de la polifenol anidava de una en al estado estacionario.
sustrato, aunque sf observaron una inactivación de la enzima en presencia de $\mathrm{H}_{2} \mathrm{O}_{2}$, no detectaron ningún efecto sobre el periodo de retardo.

El mecanismo por el cual $\mathrm{H}_{2} \mathrm{O}_{1}$ reduce el periodo de retario mostrado por la actividad cresolasa no está todavía completamente aclarado, aunque se ha sugerido que podria ser debido a su capacidad para reducir las a-quinonas de nuevo a o-difenoles (Vaughan y Butt, 1970), asi come por su capacidad para formar oxi-tirosinasa (Jolley y col., 1974; Solonon. 1981: Winkler y col., 1981). El efecto de inactivación ha sido atribuido a una modificación de los aminoácidos aromáticos del centro activo (Skotland y Jones, 1980, Sinct y Garber, 1981), estableciéndose además una dependencia de la presencia de $\mathrm{Cu}(\mathrm{II})$ en la enzima (Andrawis y Kahn, 1985), y también a una disociación de la enzima activa en dos dímeros (Nietfeld y col., 1981).

En la célula continuamente se produce peróxido de hidrógeno como consecuencia de las radicales libres del oxígeno formados en los tejidos de las plantas (Kahn, 1983); así, $\mathrm{H}_{2} \mathrm{O}_{2}$ podria tener efeclo regulador sobre la oxidación de los compuestos fenólicos, contribuyendo por tanto al menor o mayor potencial de pardeo del tejido vegetal.

BIBLIOGRAFIA

ANDRAWIS, A. y KAHN, V. (1985): Phytochemistry 24, 397.
BRADFORD, M. M. (1976): Anal. Biochem. 72, 248.
CABANES, J., GARCla CÁNOVAS, F., LOZANO, J. A. y GAR-CIA-CARMONA, F. (1987): Biochim. Biophys. Acta 923, 187.
CASH, J. N., SISTRUNK, W. A. y STUTTE, C. A. (1976): J. Food Sci. 41, 1.398 .
DUCKWORTH, H. W. y COLEMAN, J. E. (1970): J. Biol. Chem. 245, 1.613.
GARCIA-CÁNOVAS, F., GARCÍA-CARMONA, F., GALINDO, J. D., PEDREÑO, E. y LOZANO, J. A. (1979): Rev. Esp. Fisiol. 35, 209.

GARCÍA-CARMONA, F., PEDREN̂O, E., GALINDO, J. D. y GAR-C(A-CÁNOVAS, F. (1979): Anal. Biochem. 95, 433.
GARCÍA-CARMONA, F., CABANES, J. y GARCÍA-CÁNOVAS, F. (1987): Biochim. Biophys. Acta 914, 198.

GARCIA-CARMONA, F., VALERO, E. y CABANES, J. (1988): Phytochemistry 24, 1961.
JOLLEY, R. L., EVANS, L. H. MAKINO, N. y MASON, H. S. (1974): J. Biol. Chem 249, 335.

KAHN, V. (1983): Phylochemistry 22, 2. 155.
LAVOLLAY, J., LEGRAND, G., LEHONGRE, G. y NEUMANN, J. (1975): Physiol. Vég. 13, 667.

LERCH, K. (1981): En: =Metal Ions in Biological Systems» (H. Sigel, ed.), Marcel Dekker, New York. 13.
LERNER, H. R., HAREL., E., LEHMAN, E. y MAYER, A. M. (1971): Phytochemistry 10, 2.637.
LONG, T. J., OCH, F. F. y ALBEN, J. O. (1971): Archs. Biochem. Biophys. 146, 64.
MARTINEZ-CAYUELA. M., FAUS, M. J. y GIL. A. (1988): Phytochemistry 27, 1.589.
MASON, H. S. (1955): Adv. Enzymol. 16, 105.
MAYER, A. M. y HAREL, E. (1979): Phytochemisrry 18, 193.
MAYER, A. M., HAREL, E. y BEN-SHAUL, R. (1966): Phytochemistry 5, 783.
NELSON, J. M. y DAWSON, C. R. (1944): Adv. Enzymol. 4, 99.
NIETFELD, J. J., VAN DER KRAAN, J. y KEMP, A. (1981): Biochem. Biophys. Acta 661, 21.
POMERANTZ, S. H. (1966): J. Biol. Chem. 241, 161.
POMERANTZ. S. H. y WARNER. M. C. (1967): J. Biol. Chem. 242. 5.308.

ROBB, D. A. (1981): En: «Biochemistry of fruits and veretables* (J. FRIEND, M. RHODES, Eds.), Academic Press: London.
SINET, P. M. y GARBER, P. (1981): Arch. Biochem. Biophys. 212, 411.

SKOTLAND, T. y JONES. T. (1980): Arch. Biochem, Biophys. 201, 81. SOLOMON, E. I. (1981): En: Copper proteins. (T. G. SPIRO, ed.), John Wiley, New York.
VALERO, E (1985): Tesis de Licenciaura. Universidad de Murcia.
VALERO, E., VARÓN, R. y GARCIA-CARMONA, F. (1988): J. Food Sci. 53, 1.482.
VAUGHAN, P. F. T. y BUTT, V. S. (1970): Biachem, J. 119, 89. WINKLER, M. E, LERCH, K. y SOLOMON, E. I. (1981): J. Am. Chern. Soc. 103, 7.001.

AGRADECIMIENTOS

Este trabajo ha sido parcialmente subvencionado por la Comisión Interministerial de Ciencia y Teenologia, Proyecto n. ${ }^{\circ}$ AGR-89-0296.

