LOS PROBLEMAS DE FÍSCA
 Antonio J. Barbero
 Patricio Ramirez

Antonic f. Raphera.

Patricio Ramiren
Deparfanaenfo de Fisiecy Aplicoda.
Escnela Uenversitaria Pelitionice de Allacate.

INTRODUCCIÓN

Emétodo tradicional de enseñanza de las ciencias, en general, y de la fisica en particular, constituye un buen ejemplo de plantcamiento de problemas de enunciado corrado donde los datos ofrecidos tienen su lugar exacto en el procedimiento de resolución. Muchas veces el estudiante puede adquirir la idea de que determinado tipo de problema emana de un cucrpo tcórico completo (en el sentido de que describe todos los problemas de un mismo tipo), y convencerse de que en su aprendizaje de la física debe cubrir dos objetivos: primero, aprender (en muchas ocasiones sinónimo de memorizar) los principios físicos en que se basa un tipo de problema y, en segundo lugar, manejar con soltura las herramientas matemáticas que le permitirán resolver efectivamente el problema. Tiene además la idea preconcebida de que si alcanza estos objetivos, como la física es una ciencia nexacta> dentro de su ámbito, será capaz de describir la naturaleza del mismo modo que es capaz de resolver los problemas de fisica. En este trabajo pretendemos plantear una discusión acerca de estos tópicos y una experiencia didáctica concreta para ofrecer un ejemplo sobre la forma en que los desarrollos matemáticos (aún correctamente realizados) pueden oscurecer un fenómeno.

LOS PROBLEMAS Y LA REALIDAD

Las problemas y su resolución son una parte importantísima de los cursos de física, y el enfoque de la mayoria de los libros utilizados, sobre todo en cursos generales, consiste en incorporar un buen nuimero de ejemplos resueltos, amen de amplias colecciones de enunciados al final de cada capítulo. Una de las razones de mayor peso para que un profesor recomiende determinado texto a sus alumnos es que éste contenga una buena colección de problemas resueltos y propucstos, y
éstos últimos ${ }^{(0)}$. Desde el punto de vista didáctico, quizás sea inevitable el uso de problemas tipo que se caracterizan por resumir de una forma sencilla (o no tan sencilla, pero al menos ordenada, unidireccional y coherente) los fenómenos físicos que se desea estudiar, lo cual puede explicar la pervivercia del método tradicional de enseñanza, aún al precio de alejar en cierto modo a quien aprende de la realidad cientffica tal cual es, pues los problemas reales rara vez responden a un estereotipo perfectamente definido. La realidad es compleja y los enunciados tipo la simplifican porque la reducen a un esquema que podría resumirse en los siguiente puntos ${ }^{(2)}$:

1. Especifican con todo detalle la situación fisica, dejando un margen practicamente nulo a la interpretacion por parte del lector.
2. Se incluye en el enunciado toda la información necesaria y sólo la información necesaria para resolver el problema.
3. La identificación de los principios requeridos para hallar la solución presenta una dificultad moderada.
4. La realidad aparece idealizada de modo que la solución (y muchas veces el procedimiento de resolución) sea unica y bien definida.
5. La manera más simple de resolver el problema es la aplicación 16 gica y sistemática de los principios generales.
6. La solución requiere manipalaciones matemáticas no triviales.

La mera enumeración de estas características ya permite darse cuenta de que el alurnno que resuclve un problema de física no está exactamente estudiando un fenomeno real. En palabras de Oppenheimer ${ }^{33}$, acualquicra que haya tenido relación con la enseñanza elemental no habrá dejado de observar la nota de artificial idad que caracteriza a los métodos impuestos por los profesores a sus alumnos para describir las realidades del mundo físicos.

matemáticas y física

Es bien sabido que para el estudio de la Firsica se precisa un cierto bagaje matemático que en muchas ocasiones constituye una de las dificultades más serias para buen número de alumnos. Sin embargo, dominar unas téenicas matemáticas no es en sí una garantía de comprensión satisfactoria de un fenómeno. A veces uno puede adentrarse en un bosque de cálculos, realizarlos correctamente, y quedar no obstante ayuno de la idea física subyacente. Ocurre en algunas ocasiones que la experiencia previa sobre el método matemático a aplicar en cierto tipo de problema induce a los alumnos a acometer cualquier otro
(2) LIN, H: A A I J. Plys 50(12), 1982
(3) OPPENHEIMER, J. R.: Cosferencia pronuaciada en el MTT, 1947.
de formato similar con el mismo método, de una forma no muy reflexiva ni meditada, y esto no suele ser muy recomendable. La idea de la inconveniencia del cálculo mal dirigido ya aparece en Voltaire ${ }^{(4)}$:
*Nuestro Teniente Gencral, L. Euler, produce, gracias a nuestros buenos oficios, la siguiente Declaración. Confiesa abiertamente:
V. que en el futuro nunca más llevará a cabo cálculos de sesenta páginas para obtener un resultado que puede deducirse en diez lineas después de algunas reflexiones cuidadosas, y si alguna vez vuelve a remangarse para hacer cálculos durante tres días y tres noches consecutivas, invertirá un cuarto de hora antes para pensar qué principios (de cálculo) serán los más apropiadoss.

Es pues importante que, en el desarrollo de un programa de física el profesor tenga en cuenta en su justa medida la distancia que media entre solución de un problema y realidad, por una parie, y el adecuado uso y la correcta interpretación de las matemáticas cuando se aplican a su resolución, por otra. Antes de cualquier análisis tećrico de un problema físico (planteamiento de ecuaciones, resolución de éstas y calculos numéricos), es preciso un estudio cualitativo previo y una reflexión sobre los principios implicados ${ }^{\text {s/ }}$. Esto redunda en beneficio del concepto físico cuya comprensión es, desde el punto de vista didáctico, el objetivo hacia el que se dirge el planteamiento y la resolución del problema.

EXPERIENCIA DIDÁCTICA

En un intento de corroborar mediante una situación real hasta qué punto las consideraciones vertidas en los párrafos anteriores acerca de la distancia entre matemáticas y física son aplicables a un grupo de alumnos de fisica de nuestra Escuela, hemos realizado la siguiente experiencia: se ha propuesto la resolución de un problema, cuyo enunciado aparece más abajo, a un grupo de 35 alumnos que se prestaron voluntariamente a ello, con las siguientes premisas:

Previamente al planteamiento de la experiencia, y dentro de los temas de electromagnetismo *Campo Magnéticon y ${ }^{\text {aFuentes }}$ del Campo Magnético* se trataron con detalle, entre otros, los siguientes aspectos:
(4) Tomado de La Diatriba dé Docior Akakia, de Voltaise, segùn trascripción de WIRTH. N.: Aigorimas + estructaras de datos a prognomas, Ediciones del Castillo. 1980.
(5) LEVY-LEBL.OND, J. M.: en la introducción de La fistea en pregantas. Mecdnicu. Ed. Alianza, 1987.

1. Concepto de fuerza ejercida por un campo magnético sobre un elemento de corriente. Aplicación al caso de un conductor rectilineo portador de corriente totalmente inmerso en el seno de un campo magnérico constante.
2. Mostrar el hecho de que la fuerza total sobre cualquier espira plana que transporta corriente y se encuentra sometida a un campo magnético constante es nula, cualquiera que sea la forma de la espira.
3. Realización de problemas de cálculo de campo magnético creado por distribuciones diversas de corriente, en aplicación de la ley de Biot y Savart, con el uso del callculo integral cuando ello es necesario en virtud de la geometría de la distribución.

El enfoque de estos temas fue similar al que puede encontrarse en las refs. ${ }^{(6)} \mathrm{y}^{\text {(0) }}$. El enunciado propuesto fue el siguiente:
*Calcular la fuerza a la que se encuentran sometidos los conductores que aparecen en las figuras 1 y 2 cuando por ellos circula una corriente de intensidad constante en el sentido indicado y se encuentran sometidos a un campo magnético entrante de módulo B y perpendicular a su planos. (Obsérvese, en refcrencia a lo dicho en el apartado sobre los problemas y la realidad, cómo este enunciado presenta un problema tipo en el que se omite completamente la descripción de la causa que hacer circular la corriente de intensidad constante -los conductores deben formar parte de un circuito si se aspira a mantener en ellos tal corriente-. Sin embargo, este enunciado puede ser representativo de una buena parte de los que se proponen a los alumnos de física).

La solución de este problema puede acometerse emprendiendo el arduo trabajo de calcular las componentes de la fuerza sobre cada elemento diferencial de la elipse en el caso de la figura 1 e integrando después. El caso propuesto en la figura 2 puede resolverse de modo más sencillo por consideraciones de simetría, ya que la fuerza que actúa sobre los peldafios en su parte vertical ascendente y descendente se compensa a causa de los sentidos opuestos de la corriente en los dos tramos, y en consecucncia sólo queda para calcular la fuerza que actúa sobre los segmentos horizontales, equivalente a la que actúa sobre un tramo rectilineo de la misma longitud. Respecto al conductor de la figura 1 también puede argumentarse que en realidad se trata de un caso límite de la figura 2 , con infinitos peldaforos de altura infinitesimal,
(7) HALLIDAY, D. y RESNICK. R: Fisica, Pane il CECSA. Mérico, 1989.

y que por tanto tiene la misma solución. Pero sin duda es mucho más elegante y tiene más sentido físico resolver el problema percatándose de que los dos casos admiten el siguiente razonamiento: si tos dos conductores fuesen parte de sendas espiras cerradas planas, la fuerza total sobre tales espiras sería nula independientemente de su forma, y en consecuencia podemos imaginar cerradas las dos figuras anteriores por medio de dos tramos verticales paralelos de longitud arbitraria y un tramo horizontal de longitud 3L (figuras 3 y 4). Las fuerzas sobre los tramos verticales se compensaría entre sí dado el sentido opuesto de la corriente en cada uno de ellos, y en consecuencia la fucrea sobre los conductores del enunciado sería la opuesta la fuerza sobre el uramo recto horizontal, es decir, 3ILB. Nótese nuevamente que hacemos una idealización al omitir cualquier referencia a la fucnte precisa para mantener esa corriente.

Los resultados obtenidos sobre la muestra de 35 alumnos fueron los siguientes:

1. Resolvieron casos correctamente a partir de la fuerza nula sobre una espira cerrada: 0 .
2. Resolvieron ambos casos correctamente a partir de consideraciones de simetría: 8.
3. Resolvieron correctamente el caso 2 por simetría, y acometieron el caso 1 utilizando el cálculo integral eligiendo elementos diferenciales apropiados: 13.
4. No resolvieron ninguno de los dos casos: 14.

Aún tratándose de una experiencia muy puntual, estos resultados ilustran hasta qué purto los estudiantes tienden a seguir unas pautas de cálculo antes que a analizar con cierta profundidad el cnunciado del problema y advertir así que éste admile otra forma de resolución. Creemos que ello no hace sino poner de manifiesto la dificultad intrinseca de aprehender las ideas físicas, que generalmente requieren una gran capacidad de abstracción.

AGRADECIMIENTO

Los autores desean expresar su agradecimiento a los alumnos del grupo 1.? B de la Diplomatura de Informática de la E.U.P.A. (curso 90/91) por su colaboración en la experiencia didáctica.

