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Natural and social sciences seek to understand, explain and 
predict natural phenomena as well as to fi nd socially relevant 
solutions to problems. To achieve its objectives, the scientifi c 
enterprise uses statistical analysis in combination with a specifi c 
form of reasoning based on deduction and induction. This interplay 
between deductive and inductive reasoning is considered the key 
core of statistical discovery in science (Box, 1976). However, 
some scholars think that the equilibrium between induction 
and deduction is unbalanced in favour of deductive reasoning 
procedures (Orlitzky, 2012). Additionally, it seems that statistical 
practise is becoming an automated process in which researchers 

tend to blindly use statistical knowledge to make decisions about 
their data (Gigerenzer, 1998, 2004).

The mainstream of statistical analysis is characterised by using 
the null hypothesis signifi cance testing (NHST) procedure which 
have been the predominant option over the last 75 years. One of 
the key elements in the NHST scheme is the p-value as a tool to 
decide about the null hypothesis. But the p-value and its use have 
been extensively criticized, reviewed or questioned as an optimal 
model for making statistical decisions (i. e., Altman & Krzywinski, 
2017a, 2017b; Bakan, 1966; Cohen, 1994; Dar, Serlin, & Omer, 
1994; Halsey, Currant-Everett, Vowler, & Drummond, 2015; 
Nuzzo, 2014; Orlitzky, 2012; Rosnow & Rosenthal, 1989; Stern, 
2016; Wagenmakers, 2007; Wasserstein & Lazar, 2016; Wilkinson 
& Task Force on Statistical Inference, 1999). There are several 
notable problems associated with p-values. Among the most 
prominent problems of p-value we could highlight that it is used 
in an all-or-nothing fashion to decide about statistical hypothesis 
(i. e., Masson, 2011; Stern, 2016) or that it has been understood as 
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Abstract Resumen

Background: The p-value is currently one of the key elements for testing 
statistical hypothesis despite its critics. Bayesian statistics and Bayes 
Factors have been proposed as alternatives to improve the scientifi c 
decision making when testing a hypothesis. This study compares the 
performance of two Bayes Factor estimations (the BIC-based Bayes 
Factor and the Vovk-Sellke p-value calibration) with the p-value when 
the null hypothesis holds. Method: A million pairs of independent data 
sets were simulated. All simulated data came from a normal population 
and different sample sizes were considered. Exact p-values for comparing 
sample means were recorded for each sample pair as well as Bayesian 
alternatives. Results: Bayes factors exhibit better performance than the 
p-value, favouring the null hypothesis over the alternative. The BIC-
based Bayes Factor is more accurate than the p-value calibration under 
the simulation conditions and this behaviour improves as the sample size 
grows. Conclusions: Our results show that Bayesian factors are good 
complements for testing a hypothesis. The use of the Bayesian alternatives 
we have tested could help researchers avoid claiming false statistical 
discoveries. We suggest using classical and Bayesian statistics together 
instead of rejecting either of them.

Keywords: p-value, Bayes Factor, linear models, simulation, hypothesis 
tests.

Decisiones sobre hipótesis nulas usando p-valores o alternativas 
Bayesianas: un estudio de simulación. Antecedentes: el p-valor es 
hoy en día, pese a las críticas, uno de los elementos clave del contraste 
de hipótesis. La estadística Bayesiana y los factores de Bayes han sido 
propuestos como alternativas para mejorarlo. Este estudio compara la 
ejecución de dos factores de Bayes con el p-valor cuando la hipótesis 
nula es la más plausible. Método: se simularon un millón de pares de 
conjuntos de datos independientes procedentes de poblaciones normales 
y se consideraron diferentes tamaños muestrales. Se calcularon los 
p-valores para comparar las medias muestrales para cada par de muestras, 
así como las alternativas Bayesianas. Resultados: los factores de Bayes 
muestran mejor ejecución que el p-valor, favoreciendo la hipótesis nula 
frente a la alternativa. El Factor de Bayes basado en el BIC funciona 
mejor que la calibración del p-valor bajo las condiciones simuladas y su 
comportamiento mejora a medida que el tamaño de la muestra aumenta. 
Conclusiones: nuestros resultados muestran que los factores de Bayes 
son buenos complementos para el contraste de hipótesis. Su utilización 
puede ayudar a los investigadores a no caer en falsos descubrimientos 
estadísticos y nosotros sugerimos el uso conjunto de la estadística clásica 
y Bayesiana.

Palabras clave: p-valor, Factor de Bayes, modelos lineales, simulación, 
contraste de hipótesis.
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the probability that the null hypothesis is true (i. e., Cohen, 1994; 
Marden, 2000).  In general, it seems that these problems with the 
p-value are generated at the educational context. For example, in 
a study carried out by Haller & Krauss (2002) it was shown that 
university students and professors shared similar misconceptions 
about the meaning and logic of the p-value. 

The p-value is a conditional probability. Specifi cally, it is the 
probability of having observed the sample data, or some more 
extreme, if the null hypothesis was true. That is to say, P(D|H

0
). 

In frequentist terms, the p-value represents the number of times 
we would observe a sample statistic, or a more extreme one, in 
case the null hypothesis was true in population after we repeated 
one experiment many times under the same conditions. As 
a result, the lower the p-value the more unlikely would be the 
observed data in case the null hypothesis was true. That is the 
reason why the classical NHST is considered to not to provide 
information about the truth of the statistical hypothesis. As stated 
by Krzywinski & Altman (2013), this statistical viewpoint “does 
not tell us whether we are right. It tells us the chances of being 
wrong” (p. 809). The general recommendation is to use the p-value 
more sensibly avoiding misinterpretations, providing effect sizes, 
power and confi dence interval estimations (i. e., Balluerka, 
Vergara, & Arnau, 2009; Gallistel, 2009; Wasserstein & Lazar, 
2016; Wilkinson & Task Force on Statistical Inference, 1999). 
The controversy is currently so strong that the Basic and Applied 
Social Psychology journal (Trafi mow, 2014) recommended their 
authors to use different statistical procedures to report their 
results. Finally, this journal decided to forbid any reference to the 
classical NHST procedure (Trafi mow & Marks, 2015). However, 
as stated by Leek & Peng (2015) or Orlitzky (2012), the p-value 
issue is only the “tip of the iceberg” and prohibition is probably 
not the best solution.

One of the proposed alternatives to classic statistics based on 
NHST is to use Bayesian inference (i. e., Bakan, 1966; Balluerka 
et al., 2009; Cohen, 1994; Marden, 2000; Nuzzo, 2014; Stern, 
2016; Trafi mow & Marks, 2015; Wagenmakers, 2007; Wasserstein 
& Lazar, 2016). Bayesian statistic combines observed data with 
prior information about phenomena to make inferences by using 
the Bayes theorem. It is considered a common-sense approach 
to fi nd evidences supporting statistical inferences (Anscombe, 
1961; Bolstad, 2007; Edwards, Lindman, & Savage, 1963; 
Puga, Krzywinski, & Altman, 2015). Contrary to the p-value 
approximation, Bayesian statistics focuses on the probability 
of statistical hypothesis given sample data, P(H

i
|D). Inside the 

Bayesian statistics framework, Bayes Factors have received 
plenty of attention as alternatives to the NHST procedure (i. e., 
Hoijtink, van Kooten, & Hulsker, 2016a, 2016b; Jarosz & Wiley, 
2014; Morey & Rouder, 2011; Morey, Wagenmakers, & Rouder, 
2016; Stern, 2016; Wagenmakers, 2007). In the context of null 
and alternative hypothesis tests, the Bayes Factor measures the 
amount of evidence favouring one hypothesis against another. For 
example, when we compute the Bayes Factor for H

0
 to H

1
 (BF

01
), 

we are fi nding the odds favouring the null hypothesis against the 
alternative [P(H

0
|D) / P(H

1
|D)]. Thus, the Bayes Factor represents 

how much likely is the null hypothesis given the observed data 
compared with the alternative one. In other words, “it is the 
factor by which prior odds is changed to the posterior odds” for 
an event (Bolstad, 2007, p. 70). As a result, the Bayes Factor is a 
quantitative measure informing about how the observed data have 
modifi ed the odds of H

0
 independently of its prior probability, 

P(H
0
), (Held & Ott, 2018). When Bayes Factor equals one, data 

provide the same evidence for both hypothesis. However, when the 
BF

01
 is higher than one, the null hypothesis is more probable than 

the alternative one. For example, if we observed a BF
01

 = 5, we 
could conclude that the null hypothesis is fi ve times more likely 
than the alternative.

Wagenmakers (2007), based on the model selection philosophy, 
proposed a method to compare the likelihood of the null and the 
alternative hypotheses using Bayes Factors. He suggested to use 
the Bayesian information criterion (BIC) to compute Bayes Factors 
for the null or the alternative hypothesis considering the variance 
components in linear models (Jarosz & Wiley, 2014; Masson, 2011). 
Wagenmakers’ proposal has several advantages and weaknesses. 
The most striking advantage is that computations are relatively 
simple by taking the outputs from classical tests (i. e., t test or 
ANOVAs) provided by common statistical software. However, the 
main drawback of his proposal is that the resulting Bayes Factor 
takes into account a default prior information which is still object 
of hot discussions (i. e., Hoijtink et al., 2016a, 2016b; Morey et al., 
2016; Stern, 2016). Another simple way to compute a Bayes Factor 
approximation is by using the p-value calibration introduced by 
Sellke, Bayarri, & Berger (2001). The Sellke et al. (2001) p-value 
calibration (also known as “Vovk-Sellke maximum p-ratio” or VS-
MPR) is a function of the p-value and it is interpreted as the lower 
bound of the Bayes Factor (favouring H

0
 to H

1
) for a wide range 

of different prior distributions (Altman & Krzywinski, 2017b). 
This calibration is simply computed by using the equation -e × p × 
ln(p), where p refers to the p-value. 

Our objective is to compare the decisions about the null 
hypothesis by using the p-value at different classically applied 
cut-offs with the BIC-based and p-value based Bayes factors 
described above (we are not interested in the epistemological 
discussion about the truth of the null hypothesis but the interested 
reader can fi nd some refl ections about it in Cohen, 1994; Gallistell, 
2009, or Orlitzky, 2013). We will simulate situations in which the 
null hypothesis holds and compare how these statistics orient 
the decision making about the null hypothesis. We expect the 
decisions based on Bayes Factor estimations to be more accurate 
than those made by using the p-value. If Bayesian alternatives to 
classical p-values are useful and more accurate to make decisions 
about null hypothesis, experimental and observational researchers 
would benefi t from them when making statistical inferences in 
their research. More specifi cally, researchers would benefi t from 
those tools helping them not to claim false statistical discoveries.

Method

Procedure

A million data sets were simulated using the native functions 
implemented in the R software for statistical computing (version 
3.3.3 for Windows, R Core Team, 2017). Each data set consisted on 
two random samples (s1 and s2) taken from normally distributed 
populations with parameters N(μ = 0, σ = 1) in both cases. Ten 
different sample sizes were simulated (5, 10, 15, 20, 40, 70, 100, 
250, 500 and 1000) and one hundred thousand data sets were 
simulated per sample size. Simulations were generated using 
random seeds to simplify replication and source code is available 
on the Puga and Ruiz-Ruano (2017) Open Science Framework 
project.
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Data analysis

Exact p-values were extracted from the fi tted linear model 
comparing (bilateral contrasts) sample means (s1 and s2) on each 
one of the simulated datasets. Dichotomic dummy variables were 
also generated to record situations in which the p-value was equal 
or lower than the normally used cut-offs (.05, .01, .005 and .001) 
to make decisions about the null hypothesis. The value .005 was 
included to take into account the recent suggestion to reduce the 
threshold to claim new discoveries by Benjamin et al. (2017). 

Two different Bayes Factors were computed. Firstly, the 
Wagenmakers (2007) BIC-based Bayes Factor was calculated 
from the variance components for each linear model comparing 
the two sample means. Secondly, the Sellke et al. (2001) p-value 
calibration (VS-MPR) was also computed. In this case, when 
p < 1/e, the value of the Bayesian calibration was coerced to 
1, likewise it is done by JASP software (JASP Team, 2017).  
Both Bayes Factors were recorded to refer to evidences for the 
alternative hypothesis to the null (BF

10
) in order to simplify the 

comparison with p-values dummies. Although we are aware of 
the risks of using arbitrary cut-offs to interpret statistics in the 
context of statistical inference (see, for example, the discussion 
about that issue when considering the p-value in Rosnow & 
Rosenthal, 1989; or how Hoijtink et al., 2016, review this topic 
for Bayes Factors), we recoded both Bayes factors following the 
Jeffreys’ (1948) labelled intervals. As a result, a BF

10
 between 1 

and 3 was considered anecdotal evidence for H
1
 to H

0
, from 3 to 

10 was considered substantial, from 10 to 30 strong, from 30 to 
100 very strong and higher than 100 decisive.

The R source code to perform all computations and 
recodifi cations is available on the Puga and Ruiz-Ruano (2017) 
Open Science Framework project.

Results

As can be seen in Table 1, the BIC-based Bayes Factor as 
well as the Vovk-Sellke Bayesian calibration produce the higher 
rates of correct inferences compared to the p-value. As expected, 
the error rate of the p-value is a function of the chosen cut-off 
point. The more restrictive the p-value, the less errors rejecting 
the H

0
. A similar trend is observed for Bayes factors, although 

a different behaviour is observed for BIC-based and p-value 

based Bayes Factor. Firstly, as can be seen in Table 1, whereas 
the Vovk-Sellke calibration produces a higher rate of anecdotal 
(33.02% of the times) evidence favouring H

1
 against H

0
 (which 

can be explained by the computation procedure, because when the 
p-value is higher than 1/e the value of this calibration is 1), the 
BIC-based Bayes Factor favours the alternative to the null 1.98% 
of the times. Secondly, the number of times (3.74%) that the VS-
MPR fi nds substantial, strong, very strong or decisive evidences 
for H

1
 to H

0
 is always higher than those (0.27%) for the BIC-based 

Bayes Factor. If we consider the more restrictive decision point 
for both Bayes Factors, we can see that the BIC Bayes Factor only 
favours decisively the H

1
 fi ve times, whereas the Vovk-Sellke do 

the same in 467 times. Additionally, see Table 1, using the .001 
cut-off for the p-value produces 977 erroneous rejections of the 
null hypothesis.

A closer look to the behaviour of both Bayes Factor estimations 
(Table 2) reveals that the BIC-based estimation tends to favour the 
H

0
 against the H

1
 when the p-value calibration fi nds substantial, 

strong, very strong or decisive evidences for H
1
. Thus, although 

there exists a positive relationship between both statistics (r 
= .62, 95% CI [.61, .62]), when the labels proposed by Jeffreys 
(1948) are used the concordance between them reduces (V = .33). 
Additionally, in Table 3 we can see that when the BIC Bayes 
Factor is categorised as anecdotal, the p-value still rejects the null 
hypothesis 12789 times at .05 cut-off, 3510 times at .01, 1736 at 
.005 and 301 times at .001 cut-off. However, when the Vovk-Sellke 
calibration considers a week or anecdotal evidence to H

1
, only the 

p-value at level .05 would reject the null hypothesis 12699 times. 
On the other hand, if we consider the more restrictive p-value 
(.001), we see that the BIC-based Bayes Factor performs better 
than the Vovk-Sellke calibration. Considering a .001 cut-off, there 
are 977 cases in which the p-value rejects the H

0
 whereas the 

BIC Bayes Factor favours H
0
 or considers an anecdotal evidence 

favouring H
1
 445 times. 

Table 4 shows that the more restrictive cut-off for p-value or 
label for Bayesian alternatives, the less evidence against the null 
for all sample sizes. As expected, the p-value shows a constant 
trend of errors as sample size grows. That it is to say, independently 
of the sample size, the proportion of erroneously rejected null 
hypothesis is the same. The Bayesian p-value calibration follows 
the same trend but the number of errors reduces at different 
proportions depending on the Jeffreys’ label considered. On the 
other hand, the error rate for the BIC Bayes Factor reduces as 

Table 1
Number of times that the BIC-based Bayes Factor (BF

10
), Vovk-Sellke 

maximum p-ratio (VS-MPR
10

), and p-value favours decisions towards the 
alternative hypothesis or the null (Favours to H

0
)

BF10 VS-MPR10 p-value lower than…

Anecdotal 19766 330182

Substantial 2391 29810 .05 50083

Strong 257 5648 .01 10052

Very Strong 38 1459 .005 5020

Decisive 5 467 .001 977

Favours to H
0

977543 632434  933868

Hit rate 99.73 96.26 93.39

Note: The hit rate score for Bayes Factors was computed taking into account that an 
anecdotal evidence for H

1
 to H

0
 can be considered as an acceptable decision in this 

context

Table 2
Contingency table comparing the BIC-based Bayes Factor (BF

10
) and Vovk-

Sellke maximum p-ratio (VS-MPR
10

) classifi cations

VS-MPR10

BF10

Anec-
dotal

Substan-
tial

Strong
Very 

Strong
Decisive < 1

Anecdotal 8990 8020 2148 492 116 0

Substantial 0 905 891 431 164 0

Strong 0 0 14 126 117 0

Very Strong 0 0 0 0 38 0

Decisive 0 0 0 0 5 0

< 1 321192 20885 2595 410 27 632434

Note: < 1 indicates the number of times favouring the null hypothesis
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the sample size increases. So, the bigger the sample size the less 
probable the BIC Bayes Factor provides evidence favouring the 
alternative hypothesis. On average (Figure 1), and considering the 
Jeffreys’ labels (1948), the Vovk-Sellke calibration always provides 
anecdotal evidences for H

1
 to H

0
 independently of sample size. 

On the contrary, the BIC-based Bayes Factor favours, on average, 
the null hypothesis for all sample sizes and its value decreases as 
sample size increases. 

Discussion

Our results show that Bayesian alternatives are more accurate 
to make decisions about the null hypothesis than the traditionally 
used p-values thresholds when there is no difference between 
two sets of observations. Therefore, from a practical or applied 
point of view, we could consider these alternatives as useful tools 
for researchers to avoid false discoveries claims. In a current 

situation in which replication is viewed as a problem threatening 
science reputation (i. e., Baker, 2016; Munafò et al., 2014, 2017; 
Nuzzo, 2015), statistical tools with these properties will help 
researchers when making statistical inferences. We have also 
observed that, although the Vovk-Sellke p-value calibration is 
better than the p-value to orient researchers’ decisions about the 
null hypothesis, the BIC-based Bayes Factor is more accurate 
in the situations we simulated. Our results show that the BIC 
Bayesian alternative works better as sample size becomes bigger. 
We also note that using the recently proposed (Benjamin et al., 
2017) .005 cut-off for p-value still produces about six times 
more false discoveries than using the .001 cut-off. In any case, 
we agree Trafi mow & Erap (2017) who suggest that using any 
arbitrary thresholds to control Type I is a matter which deserves 
careful discussion.

Given that as sample size grows lower p-values are expected 
for small effect sizes (i. e., Marden, 2000; Morey & Rouder, 

Table 3
Comparison between the BIC-based Bayes Factor (BF

10
), Vovk-Sellke 

maximum p-ratio (VS-MPR
10

), and p-value

  p < .05 p < .01 p < .005 p < .001 Total

Anecdotal
BF

10

VS-MPR
10

12789
12699

3521
0

1736
0

301
0

18347
12699

Substantial
BF

10

VS-MPR
10

2391
29810

1728
2478

1259
0

331
0

5709
32288

Strong
BF

10

VS-MPR
10

257
5648

257
5648

257
3094

158
0

929
14390

Very Strong
BF

10

VS-MPR
10

38
1459

38
1459

38
1459

38
510

152
4887

Decisive
BF

10

VS-MPR
10

5
467

5
467

5
467

5
467

20
1868

< 1
BF

10

VS-MPR
10

34603
0

4503
0

1725
0

144
0

40975
0

Total  50083 10052 5020 977 66132

Note: < 1 indicates the number of times favouring the null hypothesis

Table 4
Number of times the BIC-based Bayes Factor (BF

10
), the Vovk-Sellke maximum p-ratio (VS-MPR

10
), and the p-value fi nd evidence against the null hypothesis as a 

function of sample size

n

5 10 15 20 40 70 100 250 500 1000

p-value lower than…

.05 5040 5000 4897 5004 5093 5085 4993 5019 4940 5012

.01 942 1002 1010 1023 982 999 1030 1010 1009 1045

.005 473 510 491 520 485 508 533 490 501 509

.001 94 106 84 102 94 103 107 96 94 97

BF
10

Substantial 1412 442 243 160 62 41 19 5 5 2

Strong 159 60 13 14 7 2 2 0 0 0

Very Strong 31 3 1 2 1 0 0 0 0 0

Decisive 3 2 0 0 0 0 0 0 0 0

VS-MPR
10

Substantial 3083 2991 2924 3027 3048 2999 2941 2958 2908 2931

Strong 521 560 557 573 571 574 586 559 577 570

Very Strong 123 137 147 148 142 142 166 148 143 163

Decisive 56 62 34 52 44 55 38 41 40 45

2.5

2.0

1.5

1.0

0.5

0.0

A
ve

ra
ge

0 200 400 600 800 1000

Sample size

Figure 1. Average Vovk-Sellke maximum p-ratio (white circles) and BIC-
based Bayes Factor (black circles) as a function of sample size. Above one, 
the alternative hypothesis is favoured against the null, below one the null 
is supported against the alternative
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2011; Wagenmakers, 2007), future works should study whether 
our results hold at different effect sizes. An additional limitation 
of our study is we did not use Bayes Factors sensitive to prior 
distributions so future studies should address this issue. 

There is not a commonly accepted alternative to the NHST 
procedure despite critics. Our data suggest that a Bayesian 
approach to statistical inference could be a good alternative. As 
Wagenmakers (2007) note, a feasible alternative to the classic 
NHST procedure should satisfy the following requirements: a) the 
approach should only depend on observed data, b) results must 
be independent of researchers’ intentions, c) the procedure must 
orient statistical decisions considering both null and alternative 
hypothesis, e) it should be easy to calculate, and f) it must be 
an objective procedure. The BIC-based approach to statistical 
inference we tested in this paper is possibly a good starting 
point with a great compromise between all these requirements. 
Although implementing such an innovation is not easy, we agree 
that the change should begin at educational level (Bolstad, 2007; 
Orlitzky, 2012). Bayesian statistics provides researchers the 
information they need when deciding about statistical hypothesis 
(Cohen, 1994) so introducing it in educational programs will 
be helpful for scientifi c progress. Unfortunately, it is relatively 
uncommon to see Bayesian contents in the syllabus of degrees or 
postgraduate programs in psychology. For example, Ord, Ripley, 
Hook, & Erspamer (2016) reported that Bayesian statistics is rarely 

presented in the APA-accredited doctoral programs in clinical and 
counselling psychology. 

In our opinion, the use of the p-values as critical elements 
for decision making should be deinstitutionalized as suggested 
by Orlitzky (2012). Instead of banning or rejecting them at all 
(Trafi mow & Marks, 2015), we agree Marden (2000) not to forget 
p-values and “not discard the p-value all together, but just be careful” 
(p. 1319). We think Bayes factors should be used as complements 
not as a simple alternative because the statistical inference can be 
enriched by using both approaches simultaneously. As suggested 
before, the progressive introduction of Bayesian inference in the 
mainstream of research practise is not easy and some disagreements 
should be fi xed in the go (see, for example, Hoijtink et al., 2016). In 
any case, the evolution of personal computers allows nowadays the 
implementation of sophisticated analysis based on the subjective 
approach to statistical inference (Fienberg, 2006) in a similar vein 
the linear models are now plausible compared to the past (Cohen, 
Cohen, West, & Aiken, 2003) so time will tell whether Bayesian 
statistics becomes a key element into the researchers’ toolkit.  
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