POSIBILIDADES DEL ESCALAMIENTO MULTIDIMENSIONAL EN LA MODELIZACIÓN DE DESAJUSTES ASOCIADOS A LA REFORMA DE PLANES DE ESTUDIO UNIVERSITARIOS

Clemente Rodríguez Sabiote*', José Gutiérrez Pérez*2
y Antonio Fernández Cano*3

RESUMEN

En este artículo se pone de manifiesto la utilidad del Escalamiento Multidimensional (EMD) como técnica analítica multivariada que posibilita obtener inferencias fundadas sobre diversos aspectos, en nuestro caso disfunciones asociadas a la reforma de los nuevos planes de estudio en la universidad española. Como referencia para el desarrollo de este estudio se ha tomado la opinión de una representativa muestra de alumnos de la Facultad de Ciencias de la Educación de la Universidad de Granada, medida a través de una escala de opinión y cuyas respuestas han sido analizadas mediante el EMD. Estos resultados apuntan hacia la presencia de dos dimensiones diferentes de problemas: según su carácter (problemas estructurales y educativos) y según su nivel de gravedad (alta gravedad y baja gravedad).

Palabras clave: Análisis multivariante, Escalamiento multidimensional, Reformas en educación superior, Plan de estudios.

ABSTRACT

This article shows the usefulness of the MultiDimensional Scaling (MDS) a multivariate analysis technique to obtain founded inferences with good reason about different aspects, in this

[^0]case, about problems related to the new reformed syllabus implemented in the Spanish university. Taking as reference the opinion of a representative sample of students from the Faculty of Education of the University of Granada, we have completed a survey study whose results have been analysed by means of MDS. These results indicate the presence of two different dimensions of problems: according to the character (structural and educational problems) and according to level of incidence (high gravity and low gravity).

Key words: Multivariate analysis. Multidimensional scaling, Reforms in Higher Education, Syllabus.

I. INTRODUCCIÓN

La complejidad de los fenómenos y la diversidad de contextos y situaciones de las ciencias sociales ha determinado, en gran parte, que los investigadores recojan medidas múltiples para poder captar de forma más completa y real su naturaleza (Martínez Arias, 1999). A ello ha contribuido también la progresiva implantación de los métodos multivariantes o multivariables en el repertorio de estrategias de análisis de datos que se utilizan actualmente en la investigación social. El escalamiento multidimensional, MDS, MultiDimensional Scaling en su denominación anglosajona, forma parte de este conjunto de técnicas que, genéricamente, se agrupan bajo la etiqueta de Análisis Multivariante (AM).

La técnica MDS tiene sus antecedentes más remotos en los primeros modelos desarrollados por la Psicometría de finales del siglo XIX y dio lugar a lo que con posterioridad se ha conocido como Psicofísica. De este contexto, comenta Real (2001), surgieron leyes como las de Fechner (1860), o la nueva Psicofísica de Stevens (1957). En cualquier caso, existe un consenso bastante extendido en señalar a Torgerson $(1952,1958)$ como uno de los principales representantes del Escalamiento Multidimensional ${ }^{1}$.

En la actualidad son varios los programas informáticos de análisis de datos cuantitativos que incorporan en sus rutinas algún procedimiento de EMD (e.g. SPSS, SYSTAT, STATISTICA o SAS). Asimismo, desde finales de los 80 empezaron a aparecer manuales específicos sobre EMD en inglés y castellano, entre los más actuales destacamos los de Arce (1994), Borg y Lingoes (1987), Borg y Groenen (1997) y Real (2001) que tratan de divulgar su uso y más fácil accesibilidad como consecuencia de la incorporación de técnicas avanzadas en los paquetes de análisis cuantitativos de datos.

Sin embargo, no puede decirse que hasta el momento presente, su uso como estrategia de análisis de datos, esté muy extendido al servicio del usuario medio de la investigación educativa, aun cuando algunos estudios ciencimétricos (Podsakoff y Dalton, 1987, y Grimm y Yarnold, 1995) corroboran un aumento significativo de su utilización. En este sentido, el reciente trabajo de Bueno (2001) revela su escaso uso en el entorno de investigación educativa en España.

[^1]Algunas referencias actuales o relativamente recientes en las que se ha aplicado el EMD a diversos aspectos relacionados con las Ciencias Sociales en el ámbito nacional son las de Gil Flores (1993), Conchillo y Ruiz (1993), Gil Pascual (1997) y Fernández Cano y Bueno (2001).

2. CONTEXTUALIZACIÓN DEL CASO PROPUESTO

El instrumento sobre el que se ha calculado el EMD es una escala de evaluación aditiva tipo Likert cumplimentada por 2568 alumnos de la Facultad de Ciencias de la Educación de la Universidad de Granada, que fueron seleccionados a través de muestreo probabilístico estratificado proporcional, sobre un conjunto de disfunciones asociadas a la implantación de los nuevos planes de estudio ${ }^{2}$. Dicha escala está constituida por 62 ítems agrupados en 9 categorías generales de problemas siendo su objetivo fundamental medir el tipo y grado de acuerdo que el alumnado mostraba sobre los desajustes propuestos. Es decir, en qué medida éstos se consideraban o no problemas y, por ende, verificar su grado de incidencia. Las categorías de problemas propuestas fueron:

TABLA 1
CONJUNTO DE DIMENSIONES PROBLEMÁTICAS ANALIZADAS

```
            I. PROFESORADO
            II. ELECCIÓN DE CARRERA
            III. PRÁCTICAS
            IV. GESTIONES ADMINISTRATIVAS
            V. ALUMNADO
                    VI. ASIGNATURAS
VII. HORARIOS
VIII. PERSONAL DE ADMINISTRACIÓN
    IX ESPACIOS, SERVICIOS E INSTALACIONES
```


3. APLICACIÓN DEL CASO PROPUESTO

Define Martínez Arias (1999, p. 38) el EMD como una técnica «que permite explorar las dimensiones subyacentes que la gente utiliza al formar percepciones acerca de las (di) similaridades entre objetos y preferencias proporcionando un espacio reducido en el que la posición del objeto refleja su grado de (di) similaridad percibida con otros objetos».

[^2]El EMD toma como entrada habitual una matriz cuadrada de proximidades llamada $\Delta=\delta i j$, de tamaño n * n, donde «n» es el número de estímulos, o sea, (9*9). Cada elemento $\delta i j$, de Δ representa la proximidad entre los estímulos «i» y «j». Bien es verdad, que la matriz inicial a partir de la cual se ha calculado Δ es una matriz compuesta por 2568 dimensiones (tantas como sujetos) y 9 estímulos (tantos como dimensiones problemáticas objeto de análisis), es decir, una matriz de tipo rectangular «X», de tamaño $n * m$ (2568*9), o sea, 23.112 elementos.

Por otra parte, «las soluciones proporcionadas por los paquetes estadísticos son de tal naturaleza, que la dimensionalidad utilizada siempre es la menor posible, de modo que, los estímulos suelen representarse en un espacio de 2 ó 3 dimensiones en la mayoría de los casos» (Real, 2001, p.14); siendo la forma más común de representación la disimilaridad en términos de la distancia euclídea:

$$
\mathrm{Dij}=\sqrt{\sum\left(\mathrm{Xia}_{\mathrm{i}}-\mathrm{x}_{\mathrm{ja}}\right)^{2}}
$$

donde i y j son los estímulos y xia y xja son las puntuaciones de ambos estímulos en el atributo a, aunque también son frecuentes las distancias de Mahalanobis y Minkowski.

La información que constituye la matriz de datos objeto de este trabajo ha sido analizada bajo los siguientes parámetros a través del paquete estadístico SPSS 11.0, siendo la secuencia de desarrollo la siguiente:

1. Ejecución del procedimiento ALSCAL (Alternating Least Squares SCALing).
2. Nivel de medida: intervalo.
3. Modelo de Escalamiento: Clásico (EMD-C).
4. Condicionalidad por fila.
5. Dimensiones: mínimo $\rightarrow 2$; máximo $\rightarrow 2$.
6. Número de vías de la matriz: 2 vías (filas*columnas).
7. Número de modos de la matriz: 2 modos (estímulos*dimensiones).
8. Criterios de aplicación:
7.1. Convergencia de S-Stress de Young: ≤ 0.001.
7.2. Valor mínimo de S-Stress de Young: ≥ 0.005.
7.3. Número máximo de iteraciones: ≤ 30.

Los resultados suministrados por la salida ALSCAL del citado paquete estadístico son los que se exponen a continuación:

TABLA 2
DISTANCIAS ENTRE LAS DIMENSIONES PROBLEMÁTICAS CALCULADAS A PARTIR DE LA MATRIZ DE PUNTUACIONES OBTENIDAS POR CADA UNA DE ELLAS EN LA ESCALA DE OPINIÓN

	PRO	ECA	PRA	GEA	ALU	ASI	HOR	PEA	SEI
PRO	.00								
ECA	4.15	.00							
PRA	2.44	1.81	.00						
GEA	2.61	1,37	.20	.00					
ALU	2.46	3.83	2.33	2.30	.00				
ASI	2.77	1.42	.51	.09	2.51	.00			
HOR	1.89	2.71	1.12	.99	1.86	1.67	.00		
PEA	3.05	3.01	1.82	1.62	3.08	1.28	1.78	.00	
SEI	2.19	2.76	1.33	1.02	2.10	1.13	1.96	.94	.00

En la tabla anterior (tabla 2) pueden apreciarse las distancias existentes entre cada una de las dimensiones problemáticas consideradas que aquí se representan con un código. Evidentemente, la diagonal de la matriz de distancias está constituida por valores iguales a 0 , ya que hace referencia a las distancias que cada dimensión guarda consigo mismo. Apréciese, también como ejemplo, que la mayor distancia se ha producido entre la categoría «PRO» (profesorado) y «ECA» (elección de carrera) valor de 4,15 y que la menor es la que guardan la categoría «GEA» (gestiones administrativas) y «ASI» (asignaturas) con un valor de 0,09. Estos resultados son un primer indicador de la estructura que con posterioridad puede apreciarse en la configuración de derivadas. Los elementos afines (con puntuaciones similares) guardan distancias más pequeñas, mientras en los no afines éstas son más grandes.

A pesar de que con posterioridad hacemos un comentario más profuso sobre los datos obtenidos podemos adelantar algunos aspectos al amparo de los mismos. Por ejemplo, el número de iteraciones necesario para llegar a la mejoría mínima (improvement) ha sido 3. En cuanto al Stress de Kruskal (estadístico clave para la interpretación) conseguido se ha quedado por debajo de 0,10 , el valor mínimo aconsejable, alcanzándose casi un 98% de varianza explicada (RSQ) por el modelo. No obstante, la opinión de Kruskal (1964) y Spence y Olgive (1973) es que configuraciones con menos de diez estímulos y dos dimensiones (nuestro caso) pueden permitirse el lujo de alcanzar valores máximos de Stress en torno a 0,20, desde luego alejados todavía del valor 0,09 (el obtenido en nuestro análisis).

Una primera salida del EMD con valores numéricos de las coordenadas de los atributos/variables viene dada en la tabla 4 . Su interpretación es bastante similar a la de los factores obtenidos tras un análisis de componentes principales.

TABLA 3
PRINCIPALES RESULTADOS OBTENIDOS
Iteration history for the 2 dimensional solution (in squared distances)

Young's S-stress formula 1 is used.
Iteration S-stress Improvement

1	, 180	
2	, 158	, 022
3	157	000

Iterations stopped because
S-stress improvement is less than ,0010
Stress and squared correlation (RSQ) in distances
RSQ values are the proportion of variance of the scaled data (disparities)
in the partition (row, matrix, or entire data) which is accounted for by their corresponding distances. Stress values are Kruskal's stress formula 1.

For matrix
Stress $=$,098 $\mathrm{RSQ}=$,977

TABLA 4
COORDENADAS DE LOS ESTÍMULOS EN LA SOLUCIÓN DE DOS DIMENSIONES

		Dimension	
Stimulus Number	Stimulus Name	$\mathbf{1}$	$\mathbf{2}$
1	Profesorado	2.11	-.35
2	Elección carrera	-2.20	.52
3	Gestiones administrativas	-.45	.14
4	Alumnado	-.57	.09
5	Prácticas	1.40	1.42
6	Asignatura	-.71	.05
7	Horario	.41	.41
8	Personal de administración	-.30	-1.61
9	Espacios, servicios e instalaciones	.32	-.42

En concreto, las coordenadas de los estímulos sirven para situar a cada uno de ellos (categorías de problemas) en la configuración derivada en dos dimensiones. Producto de esta organización se obtiene el siguiente gráfico bidimensional que nos facilita una visión más interpretable:

Dimensión 1
Gráfico 1
Configuración de las categorías problemáticas derivada en dos dimensiones.
Modelo de distancia euclídea

Finalmente, verificamos la bondad del ajuste obtenido por el modelo (recordemos con casi el 98% de varianza explicada) a través del diagrama de Shepard. En él puede apreciarse como la nube de puntos está más o menos cercana a la recta, razón por la cual podemos hablar de un buen ajuste del modelo.

Gráfico 2
Diagrama de Shepard sobre el ajuste del modelo de distancia euclídea utilizado

4. CRITERIOS PARA LA INTERPRETACIÓN Y VALIDACIÓN DEL MODELO INFERIDO

4.I. Resultados obtenidos en nuestro estudio

Como podemos apreciar (ver tabla 3) se ha obtenido una configuración de dos dimensiones con los siguientes valores: Stress $=.098$ y RSQ $=.977$.

Kruskal y Wish (1978) sugieren como referencia que valores de Stress <0.10, pueden considerarse aceptables y reveladores de un buen ajuste, aunque como antes hemos explicitado Kruskal (1964) y Spence y Ogilve (1973) propusieron estándares de interpretación de dicho estadístico teniendo en cuenta las dimensiones a conservar y el número de estímulos objeto de análisis. De hecho, el Stress es un indicador de «maldad» de ajuste, por tanto, éste será adecuado cuanto más próximo sea su valor a 0 . Como podemos observar el valor de Stress obtenido en nuestro análisis es inferior a 0.10 y , por ende, suficiente. En cuanto a la RSQ (correlación múltiple cuadrática) que puede interpretarse como la proporción de varianza común de las disparidades -datos escalados óptimamente- explicada por las dos dimensiones, se acerca al 98%. Por su parte, la RSQ es un indicador de bondad de ajuste, mejor cuanto más se acerque su valor a 1. El valor obtenido en nuestro caso denota el buen ajuste conseguido; consideración ésta que podemos ver gráficamente refrendada en el diagrama de Shepard en el que la nube de puntos se mantiene más o menos asimilable a la recta.

El algoritmo obtenido ha convergido en 3 iteraciones, deteniéndose cuando la mejoría (improvement) en el S-Stress de Young no ha sido suficientemente importante ($\leq 0,001$, valor por defecto del programa informático).

4.2. Criterios y estrategias de interpretación de las dimensiones obtenidas en un EMD

Martínez Arias (1999, p. 135) propone dos estrategias fundamentales para la interpretación de la configuración de estímulos resultante:
a) Procedimientos subjetivos a través de la inspección visual del mapa de configuración de derivadas y de los valores numéricos de las coordenadas de los estímulos.
b) Procedimientos objetivos, complemento de los subjetivos, mediante técnicas más formalizadas como el análisis de conglomerados, precisamente la técnica que vamos a utilizar en nuestro trabajo.

4.2.I. Procedimientos subjetivos

Los siguientes recursos gráficos (gráficos 3 y 4) pueden ayudar a comprender la descripción anterior. En líneas generales, la interpretación de la solución en un EMD consiste en identificar agrupamientos en el espacio u ordenamientos a lo largo de una dimensión, para posteriormente describir el rasgo en común de los objetos agrupados y etiquetar el atributo según el cual se ordenan los objetos (Davison, 1983, citación en Gil Flores, 1993). En este sentido, las posibles denominaciones que se asignan a las dimensiones proceden de la interpretación de la configuración derivada adoptándose, como normal general, los siguientes criterios:

1. Para la dimensión 1 (horizontal) se contempla la situación que ocupan las variables en la solución bidimensional tomando como punto medio el valor 0 del eje horizontal y buscándose las variables más extremas a izquierda y derecha de dicho valor frontera. Además, se tiene en cuenta la relación que guardan los elementos de una u otra agrupación para una posible denominación lógica.

2. Para la dimensión 2 (vertical) se aprecia la localización de las variables en la configuración derivada tomando como valor frontera el «0» del eje vertical. Igual que con anterioridad se buscan los valores extremos en el plano vertical de la solución bidimensional y también las agrupaciones por encima y por debajo de dicho valor.

Tomando como referencia estos criterios en nuestra interpretación hemos distinguido claramente dos grupos de categorías en cada uno de los ejes; este es el resultado:

Gráfico 5
Configuración de las categorías problemáticas derivada en dos dimensiones y su plausible denominación

Como puede apreciarse, el cruce de los cuatro niveles que conforman cada dimensión da como resultado la presencia de cuatro cuadrantes diferenciados que por intersección son los siguientes:

A: Disfunciones estructurales graves.
B: Disfunciones estructurales leves.
C: Disfunciones educativas leves.
D: Disfunciones educativas graves.
Finalmente, y mediante el procedimiento subjetivo de la inspección visual de las coordenadas de los estímulos y su configuración derivada (mapping), hemos tratado de interpretar las dimensiones. En la dimensión 1 (eje de abcisas) hay cuatro categorías de problemas agrupadas unas muy cerca de otras. De esta forma encontramos las categorías Gestiones Administrativas (-0.45), Alumnado (-0.57) y Asignatura (-0.71) junto a Personal de Administración (-0.31), ésta en un plano sensiblemente inferior y, finalmente, Elección de Carrera (-2.21) alejada del resto que conformarían una primera agrupación. Existe, además, una segunda agrupación conformada por el resto de disfunciones y con una localización en el plano horizontal mucho más a la derecha del punto «0». Estas categorías son Horario (0.41), Espacios, Servicios e Instalaciones (0.33), Prácticas (1.40) y, sobre todo, Profesorado (2.12). Esta primera dimensión parece distinguir entre disfunciones de claro cariz estructural (valores negativos del eje horizontal) y las disfunciones de carácter educativo (valores positivos). Bien es verdad, que las categorías Horario y Espacios, Servicios e Instalaciones poseen un signo positivo y son de claro cariz estructural. A pesar de ello una plausible denominación de esta primera dimensión podría ser carácter de las disfunciones asociadas a la reforma de planes de estudio.

En la segunda dimensión, eje de ordenadas, aparecen dos categorías completamente opuestas por completo: Prácticas (1.42) y Personal de Administración (-1.61). Las categorías Elección de carrera (0.52) y Horario (0.42) ocupan unos valores medios por encima del punto 0 y Asignatura (0.06), Alumnado (0.09) y Gestiones Administrativas (0.15) se sitúan en un plano ligeramente superior a dicho valor. En una posición por debajo de 0 están localizadas las categorías Profesorado (-0.35), Espacios, Servicios e Instalaciones (-0.42) y, por supuesto, la categoría Personal de Administración de la que ya hemos dado cumplida cuenta de su localización con anterioridad. En esta segunda dimensión parece distinguirse entre desajustes de mayor y menor incidencia ${ }^{3}$, por tanto, una denominación válida podría ser: gravedad de los desajustes asociados a la reforma de planes de estudio.

4.2.2. Procedimiento objetivo

Como complemento al anterior procedimiento hemos utilizado el análisis de conglomerados, técnica cuyo fin es interpretar la solución del EMD a través de los agrupamien-

[^3]tos de estímulos resultantes. Dichos conglomerados indicarían conjuntos de estímulos muy semejantes entre sí (similitud intra) y diferentes de los demás (disimilitud entre) y pueden ser de utilidad si la finalidad principal de nuestro análisis es la clasificación, o al menos refrendar la clasificación suministrada por el EMD. Tras someter a nuestros nueve elementos a un análisis de conglomerados o cluster de tipo jerárquico mediante el método de Ward y utilizando como medida de distancia la euclídea al cuadrado se obtuvieron los siguientes resultados:

Gráfico 6
Dendograma para las nueve categorías problemáticas

Puede apreciarse como el análisis de conglomerados ratifica en gran medida la solución obtenida en el EMD, distinguiendo dos grandes agrupaciones (elipses con trazado más grueso), es decir, profesor y personal de administración frente al resto de categorías y, además, conglomerados más específicos (elipses con trazado en línea punteada) que coinciden en su proximidad espacial en la configuración derivada suministrada en el mapping del EMD. Desde este punto de vista, ambos procedimientos son en gran medida coincidentes y dotan de fundamento la interpretación desarrollada.

Gráfico 7
Espacio de estímulos para las nueve categorías problemáticas superpuesto con la estructura de agrupaciones del análisis de conglomerados

5. CONCLUSIONES

La primera conclusión derivada de este estudio estriba en denotar la fecundidad del EMD como técnica analítica multivariada que posibilita obtener inferencias fundadas. A partir de esta premisa podemos afirmar que el resultado obtenido en esta experiencia refuerza la tesis defendida por algunos autores (por ejemplo, De Miguel, 1997) sobre el alcance de las reformas de planes de estudios universitarios iniciada en 1987 con la promulgación de las Directrices Generales Comunes y Propias (R.D. 1497/87 y normativa posterior) ha consistido, fundamentalmente, en cambios de tipo estructural y poco o nada en una renovación pedagógica. Puede entenderse entonces, desde estas coordenadas, que los alumnos estén más preocupados por los aspectos estructurales (gestiones administrativas, optatividad, libre configuración, coincidencias horarias...) que por los educativos (metodologías de enseñanza, prácticas de evaluación del aprendizaje...).

En este sentido y a pesar de lo legislado acerca de la reforma, podemos afirmar, sin embargo, que todo este esfuerzo renovador estaba viciado desde su origen. La reforma
se había propuesto como la implantación de nuevos planes de estudios, y no como la construcción real de nuevos currícula (De Miguel, 1997, p.56). A este respecto, sería interesante recordar las diferencias entre plan de estudios y currículum. Mientras que el plan se concibe como «un conjunto de enseñanzas organizadas por una Universidad, cuya superación da derecho a la obtención de una titulación» (RD 1497/87, art. 2.3.) el concepto de diseño curricular se define como «el conjunto de objetivos, contenidos, métodos pedagógicos y criterios de evaluación para cada uno de los niveles, etapas, ciclos, grados y modalidades del sistema educativo» (LOGSE, art. 4.1.).

Este hecho, sin duda, ha marcado el destino de la reforma y probablemente haya contribuido al actual estado de deterioro del proceso de implantación de nuevos planes de estudio. Con este planteamiento inicial, la reforma se ha centrado fundamentalmente en los aspectos organizativo-administrativos que regulan las enseñanzas, sin abordar los problemas pedagógicos de fondo (De Miguel, 1997, p.57); cuando en realidad la reforma de las enseñanzas universitarias debería suponer, tal y como recuerda Altbach (1990), un cambio planificado aplicable tanto a su componente organizativo, como a su currículo. De esta forma, «la reforma de los planes se ha limitado a un cambio del rango y las denominaciones de las asignaturas, a una revisión de listados de contenidos y a un aumento significativo de la carga de trabajo para el alumno: más materias, más horas de clase, más contenidos por materia...» (De Miguel 1997, p.58). Además, se han olvidado aspectos como los objetivos y metodologías de enseñanza, las creencias de los profesores, así como los modelos de evaluación del aprendizaje de los profesores, cuyos cambios realmente pueden contribuir a la aparición del concepto de Innovación Pedagógica (Meade,1995).

REFERENCIAS

Altbach, P.G. (1990). Perspectives on comparative Higher Education: Essays on Faculty Students and Reform. Special Studies in Comparative Education, \# 22. Buffalo: Comparative Education Center. SUNYAB.
Arce, C. (1994). Técnicas de construcción de escalas psicológicas. Madrid: Síntesis.
Borg, I y Groenen, P. (1997). Modern multidimensional scaling. Theory and applications. Nueva York: Springer-Verlag.
Borg, I y Lingoes, J. (1987). Multidimensional similarity structure analysis. Nueva York: Springer-Verlag.
Bueno, A. (2001). Evaluación de revistas científicas españolas del campo de la educación: el caso de la Revista de Investigación Educativa «RIE» (1983-2000). Tesis Doctoral. Dpto. MIDE. Universidad de Granada.
Cohen, J.A. (1960). A coefficient of agreement of nominal scales. Educational and Psichological Measurement, 20, 37-46.
De Miguel, M. (1997): «Evaluación y reforma pedagógica de la enseñanza universitaria». En Apodaca, P. y Lobato, C. (Edits.) Calidad en la Universidad: Orientación y Evaluación. Barcelona: Laertes.
Davison, M.L. (1983). Multidimensional scaling. Nueva York: Wiley.
Fechner, G.T. (1860). Elemente der Psychophisik. Leipzig. Breitkoph und Härterl. Tomado de Real Deus, J.E. (2001). Escalamiento multidimensional. Madrid/Salamanca: La Muralla/Hespérides.

Fernández Cano, A. (1995). Métodos para evaluar la investigación en psicopedagogía. Madrid: Síntesis.
Fernández Cano, A. y Bueno, A. (2001). Escalamiento multidimensional en evaluación de revistas científicas del campo de la educación. Actas del X Congreso Nacional de Modelos de Investigación Educativa». Septiembre de 2001.AIDIPE. A Coruña.
Gil, Pascual, J.A. (1997). Análisis multidimensional de escala. Un ejemplo de aplicación del modelo INDSCAL. Actas del VIII Congreso Nacional de Modelos de Evaluación. Septiembre de 1997. AIDIPE. Sevilla, pp. 706-709.
Gil Flores, J. (1993). La posición del profesorado ante el cambio educativo. Un escalamiento multidimensional no métrico de los discursos sobre la reforma. Revista de Investigación Educativa, 21, 67-82.
Grimm, L.G. y Yarnold, P.R. (1995). Reading and understanding multivariate statistics. Washington. DC: APA.
Kruskal, J.B. (1964). Multidimensional scaling by optimising goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1-27.
Kruskal, J.B. y Wish, M. (1978). Multidimesional scaling. Newbury Park, CA: Sage.
Martínez Arias, R. (1999). El análisis multivariante en la investigación científica. Madrid/ Salamanca: La Muralla/Hespérides.
Meade, P. (1995). Utilising the university as a learning organisation to facilitate quality in higher education. Quality in Higher Education 12, 111-122.
Podsakoff, P. y Dalton, D. (1987). Research methodology in organizational studies. Journal of Managament, 13, 419-441.
Real, J.E. (2001). Escalamiento multidimensional. Madrid/Salamanca: La Muralla/Hespérides.
Spence, I. y Ogilvie, J.C. (1973). A table of expected stress values for random in multidimensional scaling. Multivariate Behavioral Research, 8, 511-518.
Stevens, S.S. (1957). On the psychophysical law. Psychological Review, 64,153-181.
Torgerson, W.S. (1952). Multidimensional scaling: Theory and method. Psychometrika, 17, 401-419.

- (1958). Theory and methods of scaling. Londres: John Wiley.

[^0]: * Departamento de Métodos de Investigación y Diagnóstico en Educación. Facultad de Ciencias de la Educación. Universidad de Granada, Campus de Cartuja s/n, 18071, Granada.

 1 E-mail: clerosa@ugr.es
 2 E-mail: jguti@ugr.es
 3 E-mail: afcano@ugr.es

[^1]: 1 De ahora en adelante EMD.

[^2]: 2 Implantados en virtud de los Reales Decretos 1267/94 y posteriores enmiendas: RD 2347/96, RD 614/97 y RD 779/98.

[^3]: 3 Si tomamos como referencia los valores medios obtenidos por cada categoría en el análisis descriptivo a que fueron sometidos los datos.

